Y \\\\

1]

Instruction

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg.
Guide v5.00 (Beta1)

Document No.: INS10247

Version: 11

Guideline for developing ZW0102, ZW0201 and ZW0301
Description: based applications using the application programming
interface (API) based on Developer’s Kit v5.00

Written By: ABR;EFH;HEH;JFR;JRM;JSI;PSH;SSE
Date: 2007-03-20

Reviewed By: HEH;JFR;JRM;JSI;PSH;SSE
Restrictions: None

Approved by:

Date CET Initials Name Justification
2007-03-20 10:26:53 NTJ Niels Thybo Johansen

This document is the property of Zensys A/S. The data contained herein, in whole or in part,
may not be duplicated, used or disclosed outside the recipient for any purpose other than to
conduct technical evaluation. This restriction does not limit the recipient's right to use
information contained in the data if it is obtained from another source without restriction.

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

REVISION RECORD

Doc. Rev Date By Pages Brief description of changes
affected
1 20050223 JFR |4.8.9 ZW_RequestNodeNeighborUpdate callback function parameters changed
1 20050223 JFR |8.7 External EEPROM image for the development controller have changed name form
zerofilled16kb_extern_eep.hex to Extern_eep.hex.
Description of downloading to ZW0201 based module included.
1 20050223 JFR 8.4 Hardware development components for ZW0201 added
1 20050224 JFR |3 Updated with respect to directories, files and descriptions
1 20050228 JFR 5.3.1 Corrected the address of a node in test mode
2 20050329 | JSI 5.3.3 Added note about Bridge Controller Multicast handling
5.4.1 Added note about Primary Controller created with Create New Primary nodelD
assignment
5.6 Updated note about Bridge Controller functionality
2 20050411 | JSlI 4.1,4.2 Refreshed to follow library flow
2 20050412 | JSI 5.6.5 Updated ZW_GetVirtualNodes description
5.4.19 Updated ZW_GetRoutingInfo description
2 20050414 JFR |51.14 Updated library memory usage
3 20050622 JFR (7.5 Updated description of Serial API
JSI
3 20050706 JFR 5.3.1 The ApplicationCommandHandler extended to also return the type of frame
received (single cast, mulitcast or broadcast frame).
3 20050803 | JSI 4.8.9 The ZW_AssignReturnRoute, ZW_DeleteReturnRoute,
ZW_AssignSUCReturnRoute and ZW_DeleteSUCReturnRoute now returns a
BOOL to indicate if the operation was started or not.
3 20050804 JFR 4.8.9 Documented ZW_SendSUCID
4 20050921 JFR 15.3.3 Number of timers available in the Timer API etc.
4 20050922 | JSI Chapter 5 Updated description of Serial API calls to be consistent with the Serial APl sample
code.
Documented ZW_StoreHomelD
5 20051005 ' SSE |5.3.2 Update the description of ZW_SetSleepMode API.
5 20051010 HEH 5.3.3 Added TRANSMITOPTION_NO_ROUTE.
5.3.11 Added ZW_AreNodesNeighbours.
Added ZW_SendDataMeta
Added ZW_RequestNewRouteDestinations
Added ZW_IsNodeWithinDirectRange
5 20051010 PSH 5.3.11 Updated description of ZW_GetControllerCapability()
5 20051013 | JSI 5.3.1 Added ApplicationSlaveUpdate
Updated ApplicationControllerUpdate with
UPDATE_STATE_NODE_INFO_RECEIVED status
5.8,5.3 Moved TRIAC API section to Common API section as all libraries now contain the
TRIAC API
7.6.2.3 Updated SerialAPI error handling description
Added FUNC_ID_SERIAL_API_SET_TIMEOUTS Serial API function description.
Added SerialAPI description for ZW_SendDataAbort
534
6 20051027 PSH |5.3.7 Allowed NULL pointer as pHomelD parameter to MemoryGetID()
6 20051103 | JSI 7.6.2.3 FUNC_ID_SERIAL_API_SET_TIMEOUTS only returns the old timeouts
6 20051104 | JSI 5.3.2 Added missing serialAP| description for ZW_SetRFReceiveMode
6 20051117 HEH 5.3.1 Added missing state to ApplicationControllerUpdate UPDATE_SUC_NODE_ID
Added Description of NULL pointer usage to ZW_MEM_PUT_BUFFER
5.3.7 Added description of Uninitialized RAM for the ZW_0201
41,73
6 20051118 HEH 5.7.2 Updated SerialAPI description for ZW_StoreNodelnfo
Zensys A/S Page ii of xi

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

REVISION RECORD

Doc. Rev Date By Pages Brief description of changes
affected
6 20051207 | JSI 5.3.1 Updated ApplicationControllerUpdate
5.3.2 Added SerialAPI description for ZW_RFPowerLevelSet
4.8.9 Added Serial API description for ZW_SendDataMeta
79.25 Added section “Serial API capabilities” describing the Serial API function
FUNC_ID_SERIAL_API_GET_CAPABILITIES
7.9.23 Added description of the usage of the CAN frame
7.9.2.6 Added section “Serial API softreset” describing the Serial API function
FUNC_ID_SERIAL_API_SOFT_RESET
7 20051221 JFR |5.1.1.2 Updated library functionality table
8 20060113 MVO All New 1° page/header/footer contents. New Doc. No.
8 20060127 | JSI 5.3.2 Updated ZW_SetRFReceiveMode with new return parameter.
SerialAPI| description also updated accordingly.
8 20060215 | SSE 5.12.1 Added the default values of RF options in the description of “App_RFSetup.a51”
5.12.2
8 20060227 SSE |5.3.8 Improved the description of the ADC_Init API
8 20060320 JFR Removed bSUCNode parameter in ZW_ASSIGN_SUC_RETURN_ROUTE API
call and corresponding swerail API call.
8 20060322 HEH 5.8.3 Added description of ZW_SUPPORT9600_ONLY call
5.7.2 Inserted Return value description for ZW_StoreNodelnfo
5.3.1 Rewrote ApplicationNodelnformation description and updated with defines for
deviceOptionsMask.
8 20060327 | JSI 5.2 Updated RECEIVE_STATUS_ROUTED_BUSY and
RECEIVE_STATUS LOW_POWER rx status bit description
8 20060403 TKR | Several Added definitions for several Serial API calls
8 20060410 JFR | 5.3.1 Updated ApplicationPoll frequency measurements for ZW0102/2W0201
8 20060420 JFR |5.1.14 Refer to the Software Release Note with respect to library sizes.
9 20060426 | JFR | Front page Fixed formatting problem
10 20060519 JFR |4.8.9 Added a dummy parameter to serial API call ZW_AssignSUCReturnRoute to be
backward compatible. Have previously only been removed in v4.10.
10 20060807 | JSI 5.4.1 Update ZW_RequestNodelnfo description
10 20060817 SSE |5.3.6 Changed the description of the API parameters
11 20060929 PSH |5.3.2 Fixed upper/lower case mismatch in WatchDog functions
11 20061013 JFR |5.3.2 ZW_RFPowerlevelRediscoverySet added
5.9.3 ZW_RequestNodelnfo now available for routing slaves too.
11 20061025 JFR 5.3.2 ZW_SLEEP macro call removed for the 200 Series
11 20061027 | EFH Memory - Discontinue ZW_IsSUCActive
11 20061031 | SSE Edited the ZWAVE_MEM_FLUSH api text
11 20061110 ABR 5.3.3 Added the use of TRANSMIT_OPTION_RETURN_ROUTE to ZW_SendDataMeta.
(Already implemented. Doc bug discovered by customer...)
11 20061214 ' SSE 5.3.1 Added the RECEIVE_STATUS_FOREIGN_FRAME rx status bit to
ApplicationCommandHandler
11 20061214 | SSE 5.3.1 Updated the description of ApplicationRfNotify function.
11 20070103 SSE |5.7 Updated the description of the ZW_SetPromiscuousMode API
11 20070108 HEH 5.5 Added ZW_RediscoveryNeeded description
11 20070108 JFR |34 Eeprom Loader, Equinox and Zetup RF description removed
3.28,7.7 Production test sample code added
and 7.8
11 20070109 EFH |4.8.6 Multicast capability added for routing slave
5.1.1 Multicast capability added for routing- and enhanced slave in table of library
functionality.
5.3.3 ZW_SendDataMulti parameters changed for optimized multicast handling.
11 20070110 ABR |Several Added descriptions of functionality related to Zensor Nets in various relevant
sections
(Many) MVO corrections included
11 20070125 EFH 4.8.9 Added description of ADD_NODE_OPTION_HIGH_POWER for
ZW_AddNodeToNetwork
11 20070207 EFH 7.7,7.8 Added description of sample applications Prod_Test DUT and Prod_Test _Gen
11 20070207 PSH |7.5,7.10 Added descriptions of Smokesensor and DoorBell sample applications
11 20070208 PSH |5.8 Added Zensor Net API to API description
11 20070212 EFH |7.7 Added description of flow in Prod_test DUT sample application program
Zensys A/S Page iii of xi

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

g Somemtonstetene

20070220 7.8 Corrected module numbers in block diagram
11 20070228 JFR |5.3.1 Z\W0201/ZW0301 ApplicationlnitHW parameter added
11 20070309 EFH |5.3.1,5.12.2 Added description of RF parameter for PA
11 20070312 JFR | Chapter 5 API calls updated and added to table of contents
Zensys AIS Page iv of xi

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Table of Contents

1 ABB REVIATIONS ... e e e e e e e e e 1
P22 | I {15 16 L I [L PRSP 1
20t T U o T 1= U E 1
2.2 Audience and Prer@QUISIESoiiiiiii ettt e e e e e e et e e e e e e e e e s neneeeeeaeeaeaannneneeaaaeas 1
3 SOFTWARE COMPONENTSooitttittiitiittititttisteteuerere e e e.—.—.———————————————————————.—.———.........—.....nnn.ann.n.a——. 2
B Tt B 1 = Tor (o] VA 14 0T (0 RSP 2
B2 Z-WAVE ..ottt a—a———————————_—a_____aaa_]]anaann]nn]]n]]]]nnn]nananananaannantatntetntnrnrnrnrnrnrnrns 4
3.2.1 T[T LU 5
3.2.2 o =T o] (3 0] a1 1] 1= PR ST 5
3.2.3 =Ty To[o [T @01 a1 o] | L= SRS 5
3.24 INSEAIET CONIIOIIET ..., 5
3.2.5] = 11 To 070] 1101 | =Y O RPRPRPRP 6
T S = 1Y RO PP POSPPRPPPPPPRS 6
3.2.7 ENNANCEA SIAVE ... 6
3.2.8 Production TESTDUTeeeeeeeeeeeeee e e e e e e 7
3.2.9 Production TeSt GENEIAONuueeee e e e e e e e e e e e e 7
3.2.10 ROULING SIAVE ..ottt et e e et e e e st e e e e sttt e e e antte e e e enteeeeesaeeeeaseeeeennnes 7
3.2.11 Zensor Net ROULING SIAVEcoooiiiiiii ettt e e e 7

G TG T {0 T [T SO PPN 7
3.3.1 o 8

1o 70 T e IO = 11 TS T=Y o =T OSSOSO PPURTRRRPORt 8
3.3.1.2 BiN_SeNSOr_Batlerycii it e et e e et e e e an e e e e s teenneeeeanneeeean 8

B T T G T I 1Y { o PSRRI 9
BT T 0 S To To 4 o= | SRS 9

G RG2S R I 43T 1= PP PRSP PTPPPI 10

B T T I S T /1 o o o U T PP URRT 10
BT T B A . oo [=T S I 1 U PP OUPPPRPRN 11
BT T I T o o [=) S € 1= o FO S OPPPUPRTP 11
3.3.1.9 SerialAPI_CoNntroller_Bridgeccciiuiiiiiiiee it e e e e e e e et e e et e e e s e e e e nnee e e e neeeennneeas 12
3.3.1.10 SerialAP]_Controller INSTaAllErccouuiiiiiie e e e e e e 12
3.3.1.11 Serial API_Controller_Portableooo s 13
3.3.1.12 SerialAP|_Controller_StatiC........ccuvii i s 13
3.3.1.13 SEHAIAPI_SIAVE ... ettt e e e e e ettt e e e e e e et at e e e e e e e aaaaeaaeeaannraes 14
3.3.1.14 S 10To) GRS T=T 0 T S PP PPPI 14
3.3.2 BINAIY SENSOT ...ttt e e ettt e e e e b bt e e e e b et e e s anbe e e e e anaeeeeeareeeeen 15
3.3.3 COMMON ... 15
3.34 Development CONIIOIIEN......... ... ettt e e e e e e e e e e e e e e e e enneeeeeeeeeeenns 15
3.35 DT o] g == | TR 16
3.3.6 @[] {1 L= TP OPU SRR 16
3.3.7 [T I o] = PR 17
3.3.8 1Y o To 11 o USRS 17
3.3.9 [foTo [0 ex 110 o TN =Y D O PSRRI 18
3.3.10 Production TeSt GENEIAtOrccciiuuiii ettt et e e et e e e s sateee e s snbeeeeesnteeeeeas 18
R T S 1= 4 = | PSPPI 19
3.3.12 SMOKE DBEECION ... euuuiiiiiiiititittt et aaaa s e s e aasaaasasassnsssnsnsnsssnnnnnsnnnnnnrnrnres 19
T T 1 T U ¢ 1 1 1 T=Y 3RO POPRSPPRPRPPR 20
T S oo] E- OSSOSO SP PP PPPRPPPRPRN 22
3.41 =Y o] o3 N 10 7= To [T S 22
3.4.2 o1 T)R 23
343 [1 U U U PP PP U 24
344 [Ted 5= o PP U 24
345 LT =Y I o PP 24
3.4.6 1Y = PRSP 24
Zensys AIS Page v of xi

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.4.7 =T T=T T PSPPSR OTPRRR 25
3.4.8 el =Ta 0] 0 1= PP OTPPRPRTPRRP 25
3.4.9 PVT and RF ReQUIAIOIY ...ttt e e e e e e e e e 26
Rt O Y i o T o PP PRTRR 27
R B 4 313 =Y R RRUPRR 27

R T PP 27
3.5.1 =] o PO PP PPPPUPPPRTP 27
T [011 = =1 ol I o PRSI 28
T TR T 1= - | N e S 28
3.54 ST 11 oSSR 28

B TR e O IR o] = 4 =Y PSPPSR 28
3.5.4.2 SamPple APPHCALION ... e e e e e e e e e e e e et r e e e e e nrrraaaaeaaaans 29

BTG € 1= T o] 1o ST PPP 30
4 Z-WAVE SOFTWARE ARCHITECTUREottiiiiiiiiiiieit ettt e e e e snnnes 31
4.1 Z-Wave System Startup COOE........uuiiiiiiiie et e e e b e e 32
4.2 Z-WaVE MaiN LOOP ... eeeiiieiee ettt ettt et e oo e e et et e e e e e e e e nseeeeeeaeeeaa e nneeeeeaaeeeaaannneeeeeeaaannnnnees 32
4.3 Z-WaVe ProtOCOI LAYEISccoiiiiiiiiiiiie ettt e e e e b e e e snb e e e 32
. S A VAT b= VN o] o] o= (o] o T 1=)Y S 32
4.5 Z-Wave SOFtWAE TIMEIS.....ccoiiiieeiiiiie et e eteee e e ettt e e e sttt e e e s attee e e e anteeeeasateeeeaantaeeeeaseeeeeaseeeesnseeeeenees 35
4.6 Z-Wave Hardware TIMEISoooiiiiiiieee et e e e e e ettt e e e e e e e abe et eee e e e e s nbaeeeeeae e nrneeees 36
4.7 Z-Wave Hardware INTEITUPESueeeeee e 36
4.8 Z-WaAVE NOUES..........eeiieiiiiie ettt e e e ettt e e e ettt e e e s bt e e e e bteeeeaate e e e e sbeeeeeanbeeeeeaneeeeeanteeeeenees 37
4.8.1 Z-Wave Portable Controller NOGEcooiiiiiiiiiiiiie et e e 37
4.8.2 Z-Wave Static Controller NOGE............uiiiiiiiiii et e e e e e 39
4.8.3 Z-Wave Installer Controller NOGEuuiiiiiiiiieeeiiee e r e e eea e e s 39
4.8.4 Z-Wave Bridge Controller NOGEcooiiiiiiiiiiiie e 39
4.8.5 Z-WaVE SIAVE NOAEooiiiiiiiiiiiiiie ettt et e e e s e st e e e e e e e s e snns e aeeeeaeesaannraneeeaaeeanns 40
4.8.6 Z-Wave Routing SIave NOTEccoiiiiiiiiiii e 41
4.8.7 Z-Wave Enhanced SIave NOAEcooo i a e e 42
4.8.8 Z-Wave Zensor Net Routing Slave NOEoiiiiiiiiiiii e 43
4.8.9 Adding and Removing Nodes to/from the Network..............coovviiiiiiiiiiii e 45
4.8.10 The Automatic Network Update.........cccoooiiiiiiiiiiii 47

5 Z-WAVE APPLICATION INTERFACES......coot ittt e e 48
LT B T YL o) = =T PP 49
511 [o = 1V o0 aTox o Tq =1 1 PSPPI 49
5.1.1.1 Library Functionality without @ SUC/SISoooiiiiiiie e e 50
5.1.1.2 Library Functionality With @ SUCociiiiie e e e e enneeas 51
5.1.1.3 Library Functionality With @ SISooo et e e e 52
5.1.1.4 Library MemOry USAQEccoiiiiiiiiiiiiei ettt e et e et e e et e e nnree s 53

5.2 Z-WaVe HEAAET FiIES ...ttt e e e et e e e e e e e e et e e e e e e s nnneeees 54
5.3 Z-Wave COmMMON AP ...ttt et e e et e e s ettt e e e e et e e e nbee e e e nseeeeeanseeeeenseeesenees 56
5.3.1 Required Application FUNCHONS........... e 56

LS TRC T s NS o o[o= 1 4 T |14 KA N 56
5.3.1.2 APPICAtIONINIESWV ...ttt e e s et naneeas 57
5.3.1.3 APPHCAtIONTESIPOII. ..o s e e e e et 58
5.3.1.4 APPICALIONPOIL.....ooiiii ettt naneeas 59
5.3.1.5 ApplicationCommandHANAIET.............ooiiiiiii e 60
5.3.1.6 ApplicationNOdeINfOrMationeiiiii i e e e e a e e e a e e e aans 61
5.3.1.7 ApplicationSlaveUpdate (All SIave lIBraries)cooiccuiiiiiii et 64
5.3.1.8 ApplicationControllerUpdate (All controller libraries)ccccoeiriiriiioiie e 65
5.3.1.9 ApplicationSlaveCommandHandler (Bridge Controller library only)cccceiiiiiiiineiiee e 66
5.3.1.10 ApplicationSlaveNodelnformation (Bridge Controller library only)..........ccocceeiiiieiniiniieee e 67
5.3.1.11 ApplicationRNOLify (ZWO301 ONIY) ...eiiiiiiiiieiiee ettt e e e e e eeeee e e e e e e e nnneeeeaaeaas 68
5.3.2 Z-WaVve Basis AP ...t e e e e e e e e e e neaaaeeana 69
Lo e A T o | USRS 69

Lo 0 AT o E- 1 (o o] PRSP PP 69
5.3.2.3 ZW_RFPOWETLEVEISEL.......ooiiiiiiiiitii ettt e e et e e sr e e nanee s 70
Zensys A/S Page vi of xi

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.2.4 ZW_RFPOWEILEVEIGELooiiiiiiiiiiii ettt e et e e et 71
5.3.25 ZW_RediscoveryNeeded (Not Slave and Bridge Controller Library).........ccccevvviiiniieiiiiiec e 72
5.3.2.6 ZW_RequestNetWorkUpdate (Not SIave Library)ccoeeeiiiiiiiiieeie e 73
5.3.2.7 ZW_RFPOWErIeVEIREAISCOVEIYSELoeiiiiiiiiiiie et a e e e et aaeeens 75
5.3.2.8 ZW_SetPromiscuousMode (Not Bridge Controller lbrary)ccccoeeoeeeiiieenieee e 76
5.3.2.9 ZW_SetRFRECEIVEMOUE.ccoiiiiiiiiiie ettt e e e et e e e e e e e st ee e e e e e e seaaaaeaeeeaes 77
5.3.2.10 Z\WW_SetSIEEPIMOAE ...ttt e e 78
5.3.2.11 ZW_SendNOodelnformation............cuiii i 81
5.3.212 ZW_SeNATESIFIAME ...ttt e b 82
5.3.213 ZW _TYPE_LIDIaIY ettt 84
5.3.2.14 F AL =1 £=1o) o [PPSO PRTTTN 85
5.3.2.15 ZW_VERSION_MAJOR / ZW_VERSION_MINOR / ZW_VERSION_BETA......ccceiiiiiieeiiieeeenee 86
5.3.2.16 ZW _ GEtProtOCOISTALUS.ccii ittt e e e e e e e e et e e e e e e e eabaaeeeaaans 87
5.3.2.17 ZW_WatChDOGERNGDIE. ..ottt e e et e e e e e e e ee e e 88
5.3.2.18 Z\W_WatChDOGDIS@DIE ..ottt ettt e e e e e ettt e e e e e e e nnbe e e e e e e e e e nnneeeaeaanan 88
5.3.2.19 ZW_WaAtChDOGIKICK ...ttt ettt ettt ettt et e bb e e sab e e sbb e e sab e e sabeesaeesineens 89
5.3.2.20 ZW_SetExtintLevel (ZWO201/ZW0O30T ONIY)....eiiiiiiieeeiieeiee ettt seeeeseeees 90
5.3.3 Z-Wave TransSport APttt ettt e e e e e e e e e e e e e neeaeaaaeeaann 91
5.3.3.1 ZW_SENADALA.eeiiitiie it e et e et naneeas 91
5.3.3.2 ZW_SendDataMeta (ZW0201/ZWO30T ONIY)....eiiiiiiiiieiieeiie ettt e et e e e 95
5.3.3.3 ZW_SendDataMUlti.........cooiiiiiiiiiieiei et e 97
5.3.3.4 ZW_SendDataADOIuuiiiiiiee ettt e e e e e e e et ——eaa e e e s e ————eaaaeeaaaraaaaaeaaaans 99
5.3.3.5 ZW _LOCKROULEuuuiiiiiiiiiiiit e e e e e e e e e e e e e e e e nnnnnnnnnrnnnrne 99
5.3.3.6 ZW _SENACONST.....oiiii ittt e e e e e e e e et — e e e e e e e e et ——eeaeeeaeabaraaaaaeeaaraaaaaaeaaane 100
534 Z-WaVE TRIAC AP ..ttt ettt e e et e e sttt e e s st e e sannaeeesansseeeesnneeas 101
5.314.1 TRIAC NIt ettt ettt h e bt s bt e bt s bt e e eae e e sht e e ean e e sab e e eeeenan e e nneeenneeen 101
5.3.4.2 TRIAC_SEeIDIMLEVENoiiiiiiiiiieie ettt b e ettt e e s abe e sebeenneennneens 103
L I T I 1 O © 1 S PP USRS UPPTRURRTIN 103
5.3.5 Z-WaAVve TimeEr AP ettt ettt e e e e e e e e e e e e e e neeeeeean 104
Lo 2 T IO 11 01T] - o AP PPRR 104
5.3.5.2 TIMEIRESIAIT ...t e ettt e e e e e e et e e e e e e e et ee e e e e e nnraaaaaaeaane 105
LT IR B 0 0 =Y 4 O 1 oY TSRO 105
5.3.6 Z-WaVe PWIM AP ...ttt e e et e e e e e e et e e e e e e e e s ntnaeeeaaaeeeanns 106
5.3.6.1 ZW_PWMSEBIUD ...ttt ettt ettt sttt ettt st e et st e e ne et n e 106
5.3.6.2 ZW _PWMPTESCAIE ... uuuiuiuitiiiiiiiti s ne e nnnrnen 108
5.3.6.3 ZW_PWMCIEAIINLEITUPLeeiiiiiiieieeiee et e e e e e e e e e e et e e e e e e e e s eeaaneeaeeanes 109
5.3.6.4 ZW_PWMERNGDIE........oiiiiiiiiiiiitieet ettt ettt h ettt nae et n et nnn e 109
5.3.7 Z-Wave MmOy AP ...t e e e e e e aa e 110
LT T 0 N /1= 4T VLT | ST 110
5.3.7.2 MeMOIYGEIBYLE ...ttt e e e e ettt e e e e e e e ne e e e e e e e e sraneeaaeaanas 111
5.3.7.3 MEMOIYPUIBYLE.coiiiiiiiiie et e e bt e e et e e e e e et e e e 112
5.3.7.4 MeMOIrYGEIBUFTEIeeiiiiie ettt e e e et 113
5.3.7.5 MeMOIYPUIBUITEI ...ttt et 114
5.3.7.6 ZW _EEPIOMINIT ...eeiiiiiiiiiiieieee et e et e e e e et e e e e e e et e e e e e e e e s s abaeeeeaeeeaeannraeeeaeeatreeaaaeaann 115
5.3.7.7 ZW _MEMOTYFIUSH ...ttt e e e ettt e e e e e e et e e e e e e e e s st eeeeaaeessaaneeaeesanes 115
5.3.8 Z-WAVE ADC AP ..ttt et et e e e e e e e e anaeean 116
5.3.8.1 ADC_ON (ZWOT02Z ONIY) .eutriiirieiriesiteeeitt ettt ettt ettt be et e e eae e see e e re e e seneesaneeseneeeanenaneens 116
5.3.8.2 A C O ittt ettt h et E e bt b et b et e e et et e naneennee e 116
5.3.8.3 ADC _SHaAIT ...ttt bbb bt h et et et n bt e et et e naneennee e 116
LRI B L O (o] o PR UPRU VPRSI 117
5.3.8.5 ADIC TNt .. tieiiee ittt bbbt bbb et e he e he e e he e ebbeenb e e nab e e saneennneea 118
5.3.8.6 ADC _SEIECIPIN ...ttt a ettt eab et e e enbe e enteeenbeeaheeanneennneen 122
5.3.8.7 ADC_BUf (ZW0201/ZWO30T ONIY) ...ueeiiiiieiie ettt ettt et et ae e et eeae e e seeeenee e 123
5.3.8.8 ADC_SetAZPL (ZW0201/ZWO30T ONIY) ..eveiiiieiiieiiie ettt ettt 124
5.3.8.9 ADC_SetResolution (ZWO0201/ZWO30T ONIY) .eeeiiiiiiiiiiieeie ettt e e e e e e e e e 124
5.3.8.10 ADC_SetThresMode (ZWO0201/ZWO30T ONIY) ..eeiviiiiiiiiiieeiie ettt 125
5.3.8.11 ADC _SEETRIES ..ottt ettt b e 126
5.3.8.12 AADC Nttt b b e a bbbt e e bt e bt e e bt e b et be e ehe e beeenne e e 127
5.3.8.13 F D O 101 (- To [O | PP PPRP 127
5.3.8.14 ADC_SetSamplingRate (ZWO102 ONIY)ooiiuiiieiiieie ettt 128
5.3.8.15 ADC _GEERES ...ttt e R et e e R bt e aateeanb e anbeennbe e eneeenbeennee 129
5.3.9 Z-WaAVE POWEE APl ...ttt e et e e e e e e s et e e e e e e e e e nnnraeeeeaean 130
5.3.9.1 PWR_SetStopMode (ZWOT02 ONIY)....ociiiiiiieiiieeieeatee ettt ettt e seeeesaaeesreeesneeeseeeesnneens 130
Zensys A/S Page vii of xi

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20
5.3.9.2 PWR_CIK_PD (ZWO0T02 ONIY) w...voveieieeeeeeeeeeeeeeeeeeeee e see s sne s see s s 131
5.3.9.3 PWR_CIK_PUP (ZWOT02 ONIY)....oovoeeeeeeeeeeeeeeeeeeeeeeeeeee e sse s e 131
5.3.9.4 PWR_SEIECt_CIK (ZWOT02 ONIY) ..ot eeeeee e eeee e ee et e et es e eee s eeee s een e eeeeeenenes 132
5.3.9.5 ZW_SetWutTimeout (ZWO201/ZWO30T ONIY) ..eeiiiiiiiiiiiiii ettt e e e e et eeeaa e e 132
5.3.9.6 ZW_IsWutKicked (ZWO0201/ZWO30T ONIY)......eeiiiiiiieiiiee e eee e e e eee e e et e e snneeeenneeeeeenes 133

5.3.10 UART INEITACE AP ..ottt e e e e e et e e e nnte e e e e nneas 133
5.3.10.1 L7 I 1o | S PP 133
5.3.10.2 UART _RECSHATUS ..ottt ettt e e e e ettt e e e e e e e nnsaeeeaaaeeanaeneaaens 134
5.3.10.3 UART _RECBYEE ...ttt e e ettt e e e e e e et et e e e e e e snnbeeeeaaeeeaeeeaaeas 134
5.3.104 (07N S RS T=T g T 5] €= L (1 PSR 135
5.3.10.5 UART _SENABYEvovieeeeeeeeeeeeeeeeeee e eee e ee e eee e ee s s e s ees s 135
5.3.10.6 (07N o RS T=T o T | [0 4o SRR 136
5.3.10.7 L8N B T=T 0T 15 (SRR 136
5.3.10.8 LN B T=T oo || PRSP 136
5.3.10.9 UART_Enable (ZW0201/ZWO301 ONIY) . .eeeeeiiiiie et e e e e eeee e e sneeas 137
5.3.10.10 UART_Disable (ZW0O201/ZWO30T ONIY).....ueeeeiiieeeiaiieeeaiieeeaeiieeeesieeeeseeeeeeseeeeeesneeeesnnneeeeaneeeeeanes 137
5.3.10.11 UART_ClearTx (ZW0201/ZWO30T ONIY) ...eeieiieeiiiiiiiieeae et ie e e e e ettt e e e e e e anieeeaaa e e e e aneeneeeaaeaann 137
5.3.10.12 UART_ClearRx (ZW0201/ZWO301 ONIY)...eeteiieeiiiiiiieeaa et ee e e e et a e e e e seeeee e e e e e e s eneneeeaaaeaaas 138
5.3.10.13 UART_Write (ZWO201/ZWO30T ONIY) c..uuiiiiiiiee ettt e ettt e e e e e et ee e e e e e e s enenneeaaaeeaan 138
5.3.10.14 UART_Read (ZWO201/ZWO30T ONIY) .. .uueiiiiiieeiiiiiiii ettt e e e e e e e e e enbeeeaaaeeean 139
5.3.10.15 Serial debuUg OUIPUL.oeiiii i e e e e e e e e e e s et r e e e e e e e s eaaeeeeeeanes 139

5.3.11 Z-Wave Real Time Clock APl (ZWO102 ONIY) ...t e e 140
5.3.11.1 (01T Tor 65T RSP 141
5.3.11.2 (01T Tor (1= RSP 142
5.3.11.3 (01 [eTe] (01 111 o JE O PP PURPRPRPP 142
5.3.11.4 L O =Y O =Y | (S 143
5.3.11.5 L IO {3 =T 2 (Y= To [P RUSTSRPRRR 144
5.3.11.6 RTCTIMEIDEIETE ...ttt ettt e e e e e et e e e e e e e e nneaeeeaaeeenneeeaaeas 145

5.3.12 Z-Wave Node Mask AP ... e e e e e e e e e eaeas 146
5.3.12.1 ZW_NOAEMASKSEIBILceiiieiiiiiiiiii ettt e ettt e e e e e ettt e e e e e e s eneaaeeeaeeeseennnraeaeaanns 146
5.3.12.2 Z\W_NOAEMASKCICAIBIL ... ettt et e e 146
5.3.12.3 ZW _INOGEMASKCIBAeeiiiii ittt e ettt et e e e e e e sttt e e e e e e st e e e e aaeeesssbaaeeeaeeesassnreeasaanes 147
5.3.124 ZW_NOAEMASKBILSIN.eeiiiiiiiieie et e et e e e e e s e e e e e e e s seabaaeeeaaeeseananraeesaanns 147
5.3.125 ZW_NOAEMASKNOGEINcoeiiiiiiiieee ettt e e e e e st e e e e e e s eabaaeeeaeeesesnnreeeaennes 148

5.4 Z-WaVve CONTrOIEI AP ... ettt ettt e e e sttt e e e sateee e e enbee e e e enbeeeeeanbeeeeenreeeaeanes 149

541 ZW _AdANOAETONEIWOTK.ueiiieieieiiitei et e e e ee e e e e e et e e e e e e e ssennrreeeaaaeeeanas 149

54.2 ZW_RemoveNOodeFromMNEtWOIKcoiiiiiiiiiiiie e 151

54.3 ZW_CoNtrollerChange.........cooueieiiiieiiie ittt et e e s e e b e e e 153

544 ZW_SetLarnMOUEeeiiiiiiiie et 155

545 ZW_GetControllerCapabilitieso i 157

546 ZW_GetNodeProtoCOoINTO ... 158

5.47 ZW _SetDefaUllo e e e e eeeaae s 159

548 ZW ReplicatioNSENd............uuiiiiiiiiii e 160

549 ZW _ ReplicationReceiveComplete.............ueoiiiiiiiiiiiiiiiiiiei e 161

5410 ZW_ASSIGNREIUMNROULE........ouiiiiiiiiii e e e e e e ra e e e 162

5411 ZW _DeleteRetUrNROULEoiiiiiii e ea e 163

5412 ZW _RemoVEFaIledNOAEID.........coooiiiiieei et 164

Lo g I AT [= T1 =Y | o o RSP 165

5414 ZW_ISPHIMANYCRI ...ttt et e st e e e naee e e e 166

5415 ZW_ReplaceFailedNOCEooiiiiiiiii e 166

5416 ZW_GetNeighbOrCOUNToc.ueiii e 169

5.4.17 ZW_AreNOdeSNEIGNDOUIS.........ooiiiiiiiiiii e e 170

5418 ZW_RequestNodeNeighborUpdate.............ooooii e 171

5419 ZW_GetROULINGINTOoiiiiiiiieiee ettt e e nbee e e st ae e e e nnae e e e ennes 172

5420 ZW_GEtSUCNOUEIDooiiiiiiiiee ettt ettt e st e e e e sntee e e e sntee e e e snrae e e e annaeeeeenneeas 173

5421 ZW_SetSUCNOMEIDooiiiiiiiiee ettt et e e e e sntee e e e st e e e e sbee e e e ensaeeeeenneeas 173

5.4.22 ZW_SENASUCIDooiiiiiiiiie ittt et e e et e e e et e e e e nbee e e e anbee e e e nraeeeeannees 176

5423 ZW _ASSIGNSUCREIUIMNROULEcciiiiiiiiiiiii ettt e e e e e e e e eeaaa e 177

5424 ZW DeleteSUCREIUMNROULE........c.coiiiiiiieiii et e e e ae e e e e 178

5.4.25 ZW_ReqUESINOAEINTOcoiiiiiiiii e e 179

Zensys A/S Page viii of xi

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.5 Z-Wave Static Controller AP ... oottt e e e e e e e e e e e e eneeeeeeeaaannnes 180
5.5.1 A A = =1 o1 L= 1 U SRR 180
55.2 ZW_CreateNeWPTIMaryCirl....... ..ottt e e e e nee e e 181

5.6 Z-Wave Bridge CONtrOllEr APoooi ettt e e e sttt e e e e ente e e e e anteeeeesnbeeeeeanseeeeanes 183
5.6.1 ZW_SendSIaveData.............ooeiiiiiiiiiieeee e a e 183
5.6.2 ZW_SendSIaveNodelnformationeeiiiiiiiiiciiiieee e 185
5.6.3 ZW_SetSIaveLearnMOAEoooiiiiiiiiiiiiiie et aaaa e 186
5.6.4 ZW _ISVIFUGINOGEoooiiiiiieeeeee ettt e e e e e e e et e e e e e e e s eennnraeeeaaaeeas 189
5.6.5 ZW_GetVIrtUAINOGES.ooiiiiiiie ettt et e e e e e e 190

5.7 Z-Wave Installer Controller APo et e e e e e e e e e e e e s e seneneeeeeeesnnnnnes 191
571 ATV I = T 1= 1011 (O 10 | o | SRR 191
LI 72 ALV 53 (o T4 =Y N\ (oo 1= [{0 TSP 192
LA T A VAV (o] =Y (o0 =Y | SR 193

5.8 Z-WAVE SIAVE AP ...ttt ettt e e e et e e e et e e e et ee e e e e rte e e e e antaeeeaanteeeanraeaaeaan 194
5.8.1 ZW_SetLearnNMOUEuuiiiiiiiiie et e e e e e et e e e e e e e et re e e e e e e e e aans 194
5.8.2 ZW SetDEfaUILooeeeiiiiieeeee e e 195
5.8.3 ZW_Support96000nly (ZWO0201/ZWO301 ONIY).cceiiuuriieiiiiiieeeiiieeeeieee e eee e 196

5.9 Z-Wave Routing and Enhanced SIave APooo ittt 197
5.9.1 ZW_RequestNewRoUtEDESHNALIONScccoiiiiiiiiiee e 197
59.2 ZW_IsNodeWithinDireCtRaANGE.........cocoiiiiiiiiie e 198
5.9.3 ZW_ReqUESINOAEINTOooiiiieiiii e e 199

5.10Z-Wave Zensor Net ROUING SIAVE AP..........oiiiiiiiie et 200
5101 ZW _ZenSOrNetBindoooiieeee e a e 200
510.2 ZW _ZensorSendDataFI00d..........ooi i a e 201
Lt L0 B AT =Y o 1= = 1 | I PR 202
510.4 ZW _ZensorSetDefauUll..............oooiiiiiiiiiiiiiiiie et 202

5.11Serial Command LiNE DEDUGGETcccuuiiiiiiiiie ettt ettt ettt e e st e e e e st e e e e sntaeeessbeeeeesnseeeeenes 203
S0t I e A T 9 =Y oY 0 T | o USSR 205
LTt I 2 AT B 1= o T T | o | SRS 205

5.12RF Settings in App_RFSetUp.@51 fil@ ..o 206
5121 ZWOT02 RF PAramELterSccoiueieieiiiiiie ittt ettt e sttt e e sttt e e s e nbe e e e e nnneee e e ennee 206
512.2 ZWO0201/ZWO0301 RF PArameEterscccuueiiiiiiiie et e e e e 207

6 HARDWARE SUPPORT DRIVERS.......coi ittt 208

6.1 Hardware Pin Definitionsttt e e e e e e e e e e e e 208

7 APPLICATION SAMPLE CODE......cc ittt ettt e et e e e e nbae e e e entae e e e ennes 211

7.1 Building ZWOX0X SAMPIE COUE.eeiiiiiiiieiiiiiee ettt ettt e st e e e sbe e e e e sbeeeeeaaes 211
7.1.1 YN PSSR 212
71.2 Y= L= 1 PSPPSR 215

7.2 Binary SENSOr SAMPIE COUEcoiuviiiieiiiiie ittt e e et e e e st e e e stte e e e aesteeeesasteeaesanseaeeanes 217
7.21 BiN_SENSOI FlES ... e e e e e e e e e e e e e e aeaaaa s 218

7.3 Binary Sensor Battery Sample COUE...........uuiiiiieiiii it e e e e e e e e e e e e e e e anes 221
7.31 Bin_Sensor Battery FileSuueiiiiiiii et 222

7.4 Development Controller Sample COe...........uiiiiiiiiiiiiiee e 225
7.4.1 DEV_CHIl FIlES. ettt e st e s et e e e e e e neeas 225

7.5 DoOr Bell SAMPIE COUE ..ottt e ettt e e e st e e e e bt e e e e sanbeeeesreeeeeaans 227
7.51 LY 1 (= =T = USRS 227
7.5.2 Do o) gl = L= I L USSR 227

7.6 LED Dimmer Sample COAEttt e e e e et e e e e e e e st e e e e e e e e e e e nnneneeaaaeannne 229
7.6.1 = L0 o I 1= o = - TR URRT 229
7.6.2 LED_DimMMEr FIlESvvveieiiiiiiiititi s 230

7.7 Production TeSt DUT ...ttt e e e e e ettt e e e e e e e s e ansae e eeeeeeeesaanneneeeeeeeaaannnes 232
7.7.1 Production TeSt DUT FlESeoiiiiiiiiee e s 233

7.8 Production TeSt GENEIALOrccoiiiiii ettt e e sttt e e e s sate e e e e anteeeesanbeeeeeaseeeeanns 234
7.8.1 Production Test Generator Files..........c.ueuiiiiiiii e 236

7.9 Serial APl Embedded Sample COEoouiiiiiiiiiiiiiee et 237

Zensys A/S Page ix of xi

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.91 10 o] oo (= To I I = | SRR 237
79.2 g 0] =T 4 1T o €= L1 [o U 237
T7.9.2.1 Frame LAYOUL.......ooo ittt e et e e e et e e et e e nr e e e e 237
T.9.2.2 FrAm@ FIOW ...uuueieiiiiiiieiii e e e e e e e e e e e e e e aaaaeaaaaaaaaaaasasasessssssnsnsnrnrnrnns 240

R IR B = ¢ (ol 0 F=T oo |11 To T PP PPOTPR 242
7.9.2.4 Restrictions on functions USiNg DUFfErS............ooiiiiiiii e 243
7.9.2.5 Serial APl CaP@bilitI®Seeiiiiiiiiiiiiiie e e e e e e e — e e e e e srraeaaaeaanes 243
7.9.2.6 Serial APl SOMIIESELcoieii ettt e et e s e e e ettt e e e et e e nae e e e ae e e e anreeeeannes 244
AR A = 1V To I 1= e[£ S PRRR 245
T7.9.2.8 Serial API FiIES.... ettt e e oo e ettt e e e e e e s aebe et eaa e e e e nbseeeeaeaannsaeeeaaeaanns 246
7.10SmMoke Detector SAMPIE COUE.......uueiiiii ittt e e e e e e e e e e reeeaaeeearees 248
A0 O TR B U 7= o1 (=Y - Vo PR 248
7.10.2 SMOKE DEteCIOr FileSeoiiiieiiiieeie et e e e e 248
7.10.3 PC based Controller Sample AppliCationcccciiiiiiiiii i 250
7.10.4 PC based Installer Tool Sample Applicationeeeviieiiiiiiie e 250
7.10.5 PC based Z-Wave Bridge Sample AppliCation............coooiiiiiiiii e 251

8 REQUIRED DEVELOPMENT COMPONENTScotiiiiiiiieiiiiiee ittt e siteee et ee e s sireeee s sneeeeeans 252
8.1 Software development COMPONENTScoiiiiiiiiii e ee e 252
8.2 ZW0102/ZW0201/ZW0301 single Chip Programmer............ocueeeeiiieieeiiiieeeeeriieeeeeeiieee e sreeee s sneeee e 252
8.3 Hardware development components for ZWOT02...... ... 253
8.4 Hardware development components for ZWO0201 i e e 254
8.5 Hardware development components for ZWO0301T...........oeeiiiiiiiiiiiiiiieeee e 254
8.6 ZW0102/ZW0201/ZW0301 10CK bit SELHNGSeeeeiieiiiieiiiiiee et nreee e 255
8.7 External EEPROM initialiZationccuuiiiiiiiiiee ettt et e e e e e e sree e e e sneeeeenes 256
9 APPLICATION NOTE: SUC/SIS IMPLEMENTATIONccciitiite ittt et e stieee e sstteee e siieee e snaeee e 257
9.1 Implementing SUC support IN All NOGES.........ooiiiiiiiiiieiiee et e e e e e e e e e e e e e e anaes 257
IS Y- (1ol @7o) i o] | =T RS PUPRP 257
9.2.1 Request FOr BEComMING SUC ...t 257
9.2.1.1 Request For Becoming a SUC Node ID Server (SIS)ccouiiiiiiiiee et 257
9.2.2 Updates From The Primary Controlleroooiiiiiiiiiee e 258
9.2.3 Assigning SUC Routes To Routing SIQVescocuiiiiiiiiiiiiie e 258
9.24 Receiving Requests for Network Updates. ..o 258
9.2.5 Receiving Requests for new Node ID (SIS ONlY).......ooiiiiiiiiiiiiii e 258
9.3 The Primary CONIIOHIENueiiiiiiee ettt e e bt e e e aabe e e e sabeeee e e 258
9.4 SeCONAry CONIIOIEISccoiiiii ittt ettt e e e b bt e e s sb et e e e sbbe e e e snbeeeeeaans 259
9.4.1 KNOWING THE SUC ..ottt ettt e et e e e et e e e et te e e e e nneeeeeenteeeeennes 259
9.4.2 Asking For And Receiving Updates............ciiiiiiiiieee e 259
9.5 INCIUSION CONMIOIIETS ...ttt e e ettt e e e sttt e e e e aste e e e s entaeeesanteeeeeanbeeesanraeaeeanns 260
9.6 ROULING SIAVES ..ottt e e e e e et e e e e e e e e st e b e e e e e e e e e sanbaraeeeaaeeesaanneeaaaeeanannnes 260
10 APPLICATION NOTE: INCLUSION/EXCLUSION IMPLEMENTATIONocoviiiiieiiiiee e 262
10.1Including new Nodes t0 the NEIWOIKcuiiiiiiii e a e e 262
10.2Excluding nodes from the NEIWOIKooiiiiiiii e 267
11 APPLICATION NOTE: CONTROLLER SHIFT IMPLEMENTATION......ccoitiiiiiiiee it 270
12 APPLICATION NOTE: ZENSOR NET BINDING AND FLOODINGcccocvveiiiiiee e 271
13 REFERENGCESo oottt ettt et e et e e sttt e ettt e e ettt e e e s bt e e e s ta e e e e ntbeeeaansbeeeeanteeeeanres 272
IN D X .ttt ettt ettt e e e et e e e h et oo a— et e e e —— e e e e e a——eeeaat—ee e et aeeeeahte e e e e ateeaeaateeeeanreeeeannraeaeaannaes 273

Figure 1 Software arChit@CIUIEcooiiiiiii it e et e e e e e e assaeeesnnnneeeas 31

Zensys A/S Page x of xi

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Figure 2 Multiple copies of the same Setframe ... e 33
Figure 3 Multiple copies of the same Get/Report frame.............ooooi e 34
Figure 4 Simultaneous communication to @ NUMbEr 0f NOAESc..eeviiiiiiiiiiee e 35
Figure 5 Slave NOde arChit@CIUIE............cuuiiii ittt e e e e e e e e srsae e e s ennneeeas 40
Figure 6 Enhanced slave node arChiteCture...............ueeiiiiii i 42
Figure 7 Node Information frame fOrmatcoooiiiiiiiiiii e 63
Figure 8 Node Information frame without command classes format...........cccccceiiviiiiiiiiii e, 158
Figure 9 Configuring environment Variables...............ooiiiiiiiiiiiiiee e 212
Figure 10 Building sample appliCatioNSoiiiiiiiiiiee e e 213
Figure 11 Possible sample application targets...........cooo e 214
Figure 12, Prod_Test_DUT test program floW.............ooiiiiiiiie e 232
Figure 13, Z-Wave teSt GENEIatOr........cooiiiiii e e 234
Figure 14 ZWO0102 Controller/SIave UNit............ooo i 253
Figure 15 ZW0102 Development Controller UNitccueiiiiiiiiiiiiiiie e 253
Figure 16 Inclusion of a node having a SUC in the Networkccccviiiiiii i 258
Figure 17 Requesting network updates from a SUC in the networkcccoocviiiiiei i 259
Figure 18 Inclusion of a node having a SIS in the NetwWork ..o, 260
Figure 19 Lost routing slave frame fIOW............oooiiiiiiiii e 261
Figure 20 Node inClusion frame flOWooiiiiiiiiie e a e e 263
Figure 21 Node exclusion frame fIOWoo i e 268
Figure 22 Controller shift frame fIOW...........coo e 270

List of Tables

Table 1, ZW0102/ZW0201/ZW0301 hardware timer allocationccccceviiiiiiiiiiiie e 36
Table 2, ZW0102/ZW0201/ZW0301 Application ISR avialabilitycccccevviiiriiiiiiie e 36
Table 3. Controller fFUNCHONAITY ... e e e e e e e e e e sareeeeaaeeesaeanes 46
Table 4. Library fUNCHONAIILYcoiiiiiieee e e e e e e e e e st e e e e e e e ennraeeeaaeeeeaannes 49
Table 5. Library functionality without @ SUC/SIS...........cooiiie e 50
Table 6. Library functionality With @ SUC...........ooi e 51
Table 7. Library functionality With @ SIS ... e 52
Table 8. ApplicationPoll frEQUENCY et eennes 59
Table 9. App_RFSetup.a51 module definitions for ZWO102..........ooo e 206
Table 10. App_RFSetup.a51 module definitions for ZW0201/ZWO0301cooiiiiee e 207
Table 11. Lock bits settings during developmentooo e 255
Table 12. Lock bits settings in end ProdUCESoooiiii i 255
Zensys A/S Page xi of xi

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

1 ABBREVIATIONS

Abbreviation Explanation

ACK Acknowledge

ANZ Australia/New Zealand

API Application Programming Interface
ASIC Application Specific Integrated Circuit
DLL Dynamic Link Library

DUT Device Under Test

ERTT Enhanced Reliability Test tool

EU Europe

GNU An organization devoted to the creation and support of Open Source software
HK Hong Kong

HW Hardware

ISR Interrupt Service Routines

LRC Longitudinal Redundancy Check
NAK Not Acknowledged

PWM Pulse Width Modulator

R&D Research and Development

RF Radio Frequency

RTC Real Time Clock

SFF Small Form Factor

SFR Special Function Registers

SIS SUC ID Server

SOF Start Of Frame

SPI Serial Peripheral Interface

SUC Static Update Controller

UPnP Universal Plug and Play

uUs United States

WUT Wake Up Timer

XML eXtensible Markup Language

2 INTRODUCTION

2.1 Purpose

The purpose of this document is to guide the Z-Wave application programmer through the very first
Z-Wave software system build. This programming guide describes the software components and how to
build a complete program and load it on a ZW0102/Z2W0201/ZW0301 Z-Wave module. The document is
also API reference guide for programmers.

2.2 Audience and Prerequisites

The audience is Zensys A/S R&D and external R&D software application programmers. The programmer
should be familiar with the Keil Development Tool Kit for 8051 micro controllers and the GNU make

utility.

Zensys A/S

Abbreviations Page 1 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3 SOFTWARE COMPONENTS

The Z-Wave development software packet consists of a protocol part, sample applications and a number
of tools used for developing and building the sample code.

3.1 Directory Structure

The development software is organized in the following directory structure:

/

- Graphics
-PC
- Bin
- InstallerTool
- ZWavePCController
- ZWaveUPnPBridge
- InstallerTool
- SerialAPI
- Source
- Libraries
- ITransportLayer
- ZWave
- ZWaveCmdClass
- ZWaveRS232
- SampleApplications
- Lib
- ZensysClasses
- ZWavePCController
- ZWaveUPnPBridge
Zensys A/S Software Components Page 2 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

- Product

- Bin
- Bin_Sensor
- Bin_Sensor_Battery
- Dev_Citrl
- Doorbell
- LED_Dimmer
- Prod_Test DUT
- Prod_Test_Gen
- SerialAP|_Controller_Bridge
- SerialAPI_Controller_Installer
- SerialAP|_Controller_Portable
- SerialAP|1_Controller_Static
- SerialAP|_Slave
- Smoke_Sensor

- Bin_Sensor

- Bin_Sensor_Battery

- Common

- Dev_Cirl

- Doorbell

- |O_Defines

- LED_Dimmer

- MyProduct

- Prod_Test DUT
- Prod_Test Gen
- SerialAPI
- Smoke_Sensor
- Util_Func

- Tools
-ERTT
-PC
- Z-Wave_Firmware
- Equinox
- IncDep
- Intel_UPnP
- Make
- Mergehex
- Programmer
-PC
- ZDP02A_Firmware
- PVT_and_RF_regulatory
- Python
- Zniffer
-PC
- Z-Wave_Firmware

Zensys A/S Software Components Page 3 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

- Z-Wave

- include

- lib
- controller_bridge_ZW010x
- controller_bridge_ZW020x
- controller_bridge ZW030x
- controller_installer_ ZW010x
- controller_installer_ ZW020x
- controller_installer_ZW030x
- controller_portable_ ZW010x
- controller_portable ZW020x
- controller_portable ZW030x
- controller_static_ ZW010x
- controller_static_ ZW020x
- controller_static ZWO030x
- slave_enhanced_ZW010x
- slave_enhanced_ZW020x
- slave_enhanced_ZW030x
- slave_prodtest_dut_ZWO010x
- slave_prodtest_dut ZW020x
- slave_prodtest_dut ZW030x
- slave_prodtest_gen_ZW010x
- slave_prodtest_gen_ZW020x
- slave_prodtest_gen_ZWO030x
- slave_routing_ZW010x
- slave_routing_ZW020x
- slave_routing_ZW030x
- slave_sensor_ZW020x
- slave_sensor_ZW030x
- slave_ZW010x
- slave_ZW020x
- slave_ZW030x

This directory structure contains all the tools and sample applications needed, except the recommended
Keil software which must be purchased separately. More information about where and how to buy the
Keil software development components are described in paragraph 8.1.

Note! It is recommended to leave the directory structure as is due to compiler and linker issues.

The majority of the above mentioned Z-Wave specific tools and sample application are briefly described
in the following sections.

3.2 Z-Wave

The Z-Wave header files and libraries are the software files needed for building a Z-Wave enabled
product. The files are organized in directories used for building Z-Wave controllers and slaves
respectively.

Zensys A/S Software Components Page 4 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.2.1 Include
The include directory contain all the header files ZW_xxx_api.h with declarations of API calls etc. The

header files are the same for ZW0102, ZW0201 and ZW0301. Refer to chapter 5.2 regarding a detailed
description.

3.2.2 Portable Controller

The lib\controller_ZWO0xO0x directory contains all files needed for building a Z-Wave controller application.
The directory contains the following files:

ZW_controller_portable_zw010xs.lib These files are the compiled Z-Wave protocol and API
ZW_controller_portable_zw020xs.lib library for the ZW0102/Z2W0201/2ZW0301 based modules
ZW_controller_portable_zw030xs.lib that a Z-Wave portable controller application should be

linked together with. The library requires a
ZM12xxRE/ZM21xxE/ZM31xxC-E module.

extern_eep.hex This file contains the external EEPROM data on the

ZM12xxRE/ZM21xxE/ZM31xxC-E module. The external
EEPROM must only be initialized once.

3.2.3 Bridge Controller

The lib\controller_bridge_ ZWO0x0x directory contains all files needed for building a Z-Wave bridge
controller application. The directory contains the following files:

ZW_controller_bridge zw010xs.lib These files are the compiled Z-Wave protocol and API
ZW_controller_bridge zw020xs.lib library for the ZW0102/Z2W0201/2ZW0301 based modules
ZW_controller_bridge_zw030xs.lib that a Z-Wave controller bridge application should be

linked together with. The library requires a
ZM12xxRE/ZM21xxE/ZM31xxC-E module.

extern_eep.hex This file contains the external EEPROM data on the

ZM12xxRE/ZM21xxE/ZM31xxC-E module. The external
EEPROM must only be initialized once.

3.2.4 Installer Controller

The lib\controller_installer_ ZWO0x0x directory contains all files needed for building a Z-Wave installer
controller application. The directory contains the following files:

ZW_controller_installer_ZW010xs.lib These files are the compiled Z-Wave protocol and API
ZW_controller_installer_zZWO020xs.lib library for the ZW0102/ZW0201/ZW0301 based
ZW_controller_installer_ZWO030xs.lib modules that a Z-Wave installer application should be

linked together with. The library requires a
ZM12xxRE/ZM21xxE/ZM31xxC-E module.

extern_eep.hex This file contains the external EEPROM data on the
ZM12xxRE/ZM21xxE/ZM31xxC-E module. The external

Zensys A/S Software Components Page 5 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

EEPROM must only be initialized once.

3.2.5 Static Controller

The lib\controller_static_ZWO0xO0x directory contains all files needed for building a Z-Wave static controller
application. The directory contains the following files:

ZW_controller_static_zw010xs.lib These files are the compiled Z-Wave protocol and API
ZW_controller_static_zw020xs.lib library for the ZW0102/ZW0201/ZW0301 based modules
ZW_controller_static_zw030xs.lib that a Z-Wave static controller application should be

linked together with. The library requires a
ZM12xxRE/ZM21xxE/ZM31xxC-E module.

Extern_eep.hex This file contains the external EEPROM data on the

ZM12xxRE/ZM21xxE/ZM31xxC-E module. The external
EEPROM must only be initialized once.

3.2.6 Slave

The lib\slave_ZWO0xO0x directory contains all files needed for building a Z-Wave routing slave node
application. The directory contains the following files:

ZW_slave zw010xs.lib These files are the compiled Z-Wave protocol and API

ZW_slave zw020xs.lib library for the ZW0102/ZW0201/ZW0301 based modules

ZW_slave_zw030xs.lib that a Z-Wave slave application should be linked
together with.

3.2.7 Enhanced Slave

The lib\slave_enhanced_ZWO0xO0x directory contains all files needed for building a Z-Wave enhanced
slave node application. The directory contains the following files:

ZW_slave_enhanced ZWO010xs.lib These files are the compiled Z-Wave protocol and API
ZW _slave_enhanced ZWO020xs.lib library for the ZW0102/Z2W0201/ZW0301 based modules
ZW_slave_enhanced ZWO030xs.lib that a Z-Wave enhanced slave application should be

linked together with. The library requires a
ZM12xxRE/ZM21xxE/ZM31xxC-E module.

Extern_eep.hex This file contains the external EEPROM data without
home ID on the ZM12xxRE/ZM21xxE/ZM31xxC-E
module. The external EEPROM must only be initialized
once.

Zensys A/S Software Components Page 6 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.2.8 Production Test DUT

The lib\slave _prodtest_dut ZWO0x0x directory contains all files needed for building a production test DUT
application on a Z-Wave module. The directory contains the following files:

ZW_slave_prodtest_dut_ZW010xs.lib These files are the compiled Z-Wave protocol and API
ZW_slave_prodtest_dut_ZW020xs.lib library for the ZW0102/Z2W0201/ZW0301 based modules
ZW_slave_prodtest_dut_ZWO030xs.lib that a Z-Wave production test DUT application should be

linked together with.

3.2.9 Production Test Generator

The lib\slave_prodtest ZWO0x0x directory contains all files needed for building a production test generator
application on a Z-Wave module. The directory contains the following files:

ZW_slave prodtest_gen_ ZWO010xs.lib These files are the compiled Z-Wave protocol and API
ZW_slave_prodtest_gen_ZWO020xs.lib library for the ZW0102/ZW0201/ZW0301 based modules
ZW_slave_prodtest_gen_ZWO030xs.lib that a Z-Wave production test generator application

should be linked together with.

3.2.10 Routing Slave

The lib\slave_routing_ ZWO0x0x directory contains all files needed for building a Z-Wave routing slave
node application on a Z-Wave module. The directory contains the following files:

ZW_slave_routing_ZWO010xs.lib These files are the compiled Z-Wave protocol and API

ZW_slave_routing_ZWO020xs.lib library for the ZW0102/Z2W0201/2ZW0301 based modules

ZW_slave_routing_ZWO030xs.lib that a Z-Wave routing slave application should be linked
together with.

3.2.11 Zensor Net Routing Slave

The lib\slave_sensor_ZWO0x0x directory contains all files needed for building a Z-Wave Zensor Net
routing slave node application on a Z-Wave module. The directory contains the following files:

ZW_slave_sensor_ZWO020xs.lib These files are the compiled Z-Wave protocol and API

ZW _slave_sensor_ZWO030xs.lib library for the ZW0201/ZW0301 based modules that a
Z-Wave Zensor Net routing slave application should be
linked together with.

3.3 Product

The Product directory contains Z-Wave sample applications for a number of different product examples.
Both source code and precompiled files ready for download are supplied.

Zensys A/S Software Components Page 7 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Each directory contains the necessary files for creating EU (868.42 MHz), US (908.42 MHz), ANZ
(921.42 MHz), and HK (919.82 MHz) products.

3.3.1 Bin

The Product\Bin directory structure contains the precompiled code of the Z-Wave sample applications
and the hex files needed to download to the Z-Wave ZWO0x0x single chip via the Z-Wave Programmer.

3.3.1.1 Bin_Sensor

The Product\Bin\Bin_Sensor directory contains all files needed for running a binary sensor sample
application on a Z-Wave module. The directory contains the following files:

binsensor_ZW010x_EU.hex The compiled and linked binary sensor sample

binsensor_ZW010x_US.hex application for the EU and US versions of the ZW0102
based module.

binsensor_ZW020x_EU.hex The compiled and linked binary sensor sample

binsensor_ZW020x_US.hex application for the ANZ, EU, HK and US versions of the

binsensor_ZW020x_ANZ.hex ZW0201 based module.

binsensor_ZW020x_HK.hex

binsensor_ZWO030x_EU.hex The compiled and linked binary sensor sample

binsensor_ZWO030x_US.hex application for the ANZ, EU, HK and US versions of the

binsensor_ZWO030x_ANZ.hex ZW0301 based module.

binsensor_ZWO030x_HK.hex

3.3.1.2 Bin_Sensor_Battery

The Product\Bin\Bin_Sensor_Battery directory contains all files needed for running a battery operated
binary sensor sample application on a Z-Wave module. The directory contains the following files:

binsensor_Battery ZW010x_EU.hex The compiled and linked battery operated binary sensor

binsensor_Battery ZW010x_US.hex sample application for the EU and US versions of the
ZW0102 based module.

binsensor_Battery ZW020x_EU.hex The compiled and linked battery operated binary sensor

binsensor_Battery ZW020x_US.hex sample application for the ANZ, EU, HK and US

binsensor_Battery ZW020x_ANZ.hex versions of the ZW0201 based module.

binsensor_Battery ZW020x_HK.hex

binsensor_Battery ZWO030x_EU.hex The compiled and linked battery operated binary sensor

binsensor_Battery_ZW030x_US.hex sample application for the ANZ, EU, HK and US

binsensor_Battery_ZW030x_ANZ.hex versions of the ZW0301 based module.

binsensor_Battery_ZW030x_HK.hex

Zensys A/S Software Components Page 8 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

3.3.1.3 Dev_Citrl

The Product\Bin\Dev_Ctrl directory contains all files needed for running a development controller sample
application on a Z-Wave module. The directory contains the following files:

extern_eep.hex

dev_ctrl_ZW010x_EU.hex
dev_ctrl_ZW010x_US.hex

dev_ctrl_ZW020x_EU.hex
dev_ctrl_ZW020x_US.hex
dev_ctrl_ZW020x_ANZ.hex
dev_ctrl_ZW020x_HK.hex

dev_ctrl_ZWO030x_EU.hex
dev_ctrl_ZWO030x_US.hex
dev_ctrl_ZWO030x_ANZ.hex
dev_ctrl_ZW030x_HK.hex

3.3.1.4 Doorbell

This file contains the external EEPROM data with home
ID on the ZM12xxRE/ZM21xxE/ZM31xxC-E module.
The external EEPROM must only be initialized once.

The compiled and linked development controller sample
application for the EU and US versions of the ZW0102
based module.

The compiled and linked development controller sample
application for the ANZ, EU, HK and US versions of the
ZW0201 based module.

The compiled and linked development controller sample
application for the ANZ, EU, HK and US versions of the
ZW0301 based module.

The Product\Bin\Doorbell directory contains all files needed for running a bell sample application on a
Z-Wave module. The development controller application is used as button in the doorbell application.

The directory contains the following files:

doorbell_bell_ZW020x_EU.hex
doorbell_bell_ZW020x_US.hex
doorbell_bell_ZW020x_ANZ.hex
doorbell_bell ZW020x_HK.hex

doorbell_bell ZW030x_EU.hex
doorbell_bell ZW030x_US.hex
doorbell_bell ZW030x_ANZ.hex
doorbell_bell ZW030x_HK.hex

The compiled and linked bell sample application for the
ANZ, EU, HK and US versions of the ZW0201 based
module.

The compiled and linked bell sample application for the
ANZ, EU, HK and US versions of the ZW0301 based
module.

Zensys A/S

Software Components

CONFIDENTIAL

Page 9 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.3.1.5 LED_Dimmer

The Product\Bin\LED_Dimmer directory contains all files needed for running a LED dimmer sample
application on a Z-Wave module. The directory contains the following files:

leddimmer_ZWO010x_EU.hex The compiled and linked LED dimmer sample

leddimmer_ZWO010x_US.hex application for the EU and US versions of the ZM1220
module.

leddimmer_ZWO010x_sff EU.hex The compiled and linked LED dimmer sample

leddimmer_ZWO010x_sff US.hex application for the EU and US versions of the ZM1206

module. The hex file is different because the ZM1206
use the 1010 pin to detect the production test mode and
the ZM1220 module use the ZEROX pin.

leddimmer_ZW020x_EU.hex The compiled and linked LED dimmer sample
leddimmer_ZW020x_US.hex application for the ANZ, EU, HK and US versions of the
leddimmer_ZWO020x_ANZ.hex ZW0201 based module.

leddimmer_ZWO020x_HK.hex

leddimmer_ZWO030x_EU.hex The compiled and linked LED dimmer sample
leddimmer_ZWO030x_US.hex application for the ANZ, EU, HK and US versions of the
leddimmer_ZWO030x_ANZ.hex ZW0301 based module.

leddimmer_ZWO030x_HK.hex

3.3.1.6 MyProduct

No hex files available.

Zensys A/S Software Components Page 10 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.3.1.7 Prod_Test DUT

The Product\Bin\Prod_Test_DUT directory contains all files needed for running a production test DUT
sample application on a Z-Wave module. The directory contains the following files:

prod_test_dut_ZWO010x_EU.hex
prod_test _dut_ZWO010x_US.hex

prod_test dut ZW010x_sff EU.hex
prod_test dut ZWO010x_sff US.hex

prod_test dut_ZW020x_ANZ.hex
prod_test dut_ZW020x_EU.hex
prod_test_dut_ZW020x_HK.hex
prod_test_dut_ZWO020x_US.hex

prod_test_dut_ZWO030x_ANZ.hex
prod_test dut ZW030x_EU.hex
prod_test dut ZW030x_HK.hex
prod_test dut ZW030x_US.hex

3.3.1.8 Prod_Test _Gen

The compiled and linked development controller sample
application for the EU and US versions of the ZW0102
based module.

The compiled and linked LED dimmer sample
application for the EU and US versions of the ZM1206
module. The hex file is different because the ZM1206
use the 1010 pin to detect the production test mode and
the ZM1220 module use the ZEROX pin.

The compiled and linked development controller sample
application for the ANZ, EU, HK and US versions of the
ZW0201 based module.

The compiled and linked development controller sample
application for the ANZ, EU, HK and US versions of the
ZW0301 based module.

The Product\Bin\Prod_Test_Gen directory contains all files needed for running a production test
generator sample application on a Z-Wave module. The directory contains the following files:

prod_test _gen_ZWO010x_EU.hex
prod_test _gen_ZW010x_US.hex

prod_test_gen_ZW020x_ANZ.hex
prod_test_gen_ZW020x_EU.hex
prod_test gen ZW020x_HK.hex
prod_test gen_ZW020x_US.hex

prod_test gen_ZWO030x_ANZ.hex
prod_test gen_ZWO030x_EU.hex
prod_test gen ZWO030x_HK.hex
prod_test _gen_ZWO030x_US.hex

The compiled and linked production test generator
sample application for the EU and US versions of the
ZW0102 based module.

The compiled and linked production test generator
sample application for the ANZ, EU, HK and US
versions of the ZW0201 based module.

The compiled and linked production test generator
sample application for the ANZ, EU, HK and US
versions of the ZW0301 based module.

Zensys A/S

Software Components

Page 11 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

3.3.1.9 SerialAPI_Controller_Bridge

The Product\Bin\Serial API_Controller_Bridge directory contains all files needed for running a serial API
based bridge controller sample application on a Z-Wave module. The directory contains the following

files:

extern_eep.hex

serialapi_controller_bridge ZW010x_EU.hex
serialapi_controller_bridge ZW010x_US.hex

serialapi_controller_bridge_ZWO020x_EU.hex
serialapi_controller_bridge_ZW020x_US.hex
serialapi_controller_bridge_ZW020x_ANZ.hex
serialapi_controller_bridge_ZW020x_HK.hex

serialapi_controller_bridge_ZW030x_EU.hex
serialapi_controller_bridge ZW030x_US.hex
serialapi_controller_bridge ZW030x_ANZ.hex
serialapi_controller_bridge ZW030x_HK.hex

3.3.1.10 SerialAPI_Controller_Installer

This file contains the external EEPROM data with
home ID on the ZM12xxRE/ZM21xxE/ZM31xxC-E
module. The external EEPROM must only be
initialized once.

The compiled and linked serial AP| based static
controller sample application for the EU and US
versions of the ZW0102 based module.

The compiled and linked serial API based static
controller sample application for the ANZ, EU, HK
and US versions of the ZW0201 based module.

The compiled and linked serial API based static
controller sample application for the ANZ, EU, HK
and US versions of the ZW0301 based module.

The Product\Bin\SerialAPI_Controller_Installer directory contains all files needed for running a serial API
based installer controller sample application on a Z-Wave module. The directory contains the following

files:

extern_eep.hex

serialapi_controller_installer_ZW010x_EU.hex
serialapi_controller_installer_ZW010x_US.hex

serialapi_controller_installer_ZW020x_EU.hex
serialapi_controller_installer_ZW020x_US.hex
serialapi_controller_installer_ZW020x_ANZ.hex
serialapi_controller_installer_ZW020x_HK.hex

serialapi_controller_installer_ZW030x_EU.hex
serialapi_controller_installer_ZW030x_US.hex
serialapi_controller_installer_ZW030x_ANZ.hex
serialapi_controller_installer_ZW030x_HK.hex

This file contains the external EEPROM data with
home ID on the ZM12xxRE/ZM21xxE/ZM31xxC-E
module. The external EEPROM must only be
initialized once.

The compiled and linked serial API based static
controller sample application for the EU and US
versions of the ZW0102 based module.

The compiled and linked serial API based static
controller sample application for the ANZ, EU, HK
and US versions of the ZW0201 based module.

The compiled and linked serial API based static
controller sample application for the ANZ, EU, HK
and US versions of the ZW0301 based module.

Zensys A/S

Software Components

Page 12 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

3.3.1.11 SerialAPI_Controller_Portable

The Product\Bin\Serial API_Controller_Portable directory contains all files needed for running a serial API
based portable controller sample application on a Z-Wave module. The directory contains the following

files:

extern_eep.hex

serialapi_controller_portable_ZW010x_EU.hex
serialapi_controller_portable_ZW010x_US.hex

serialapi_controller_portable_ZW020x_EU.hex
serialapi_controller_portable_ZW020x_US.hex
serialapi_controller_portable_ZW020x_ANZ.hex
serialapi_controller_portable_ZW020x_HK.hex

serialapi_controller_portable_ZWO030x_EU.hex
serialapi_controller_portable_ZW030x_US.hex
serialapi_controller_portable_ZW030x_ANZ.hex
serialapi_controller_portable_ ZW030x_HK.hex

3.3.1.12 SerialAPI_Controller_Static

This file contains the external EEPROM data with
home ID on the ZM12xxRE/ZM21xxE/ZM31xxC-E
module. The external EEPROM must only be
initialized once.

The compiled and linked serial API based static
controller sample application for the EU and US
versions of the ZW0102 based module.

The compiled and linked serial API based static
controller sample application for the ANZ, EU, HK
and US versions of the ZW0201 based module.

The compiled and linked serial API based static
controller sample application for the ANZ, EU, HK
and US versions of the ZW0301 based module.

The Product\Bin\Serial API_Controller_Static directory contains all files needed for running a serial API
based static controller sample application on a Z-Wave module. The directory contains the following files:

extern_eep.hex

serialapi_controller_static_ZW010x_EU.hex
serialapi_controller_static_ZW010x_US.hex

serialapi_controller_static_ZW020x_EU.hex
serialapi_controller_static_ZW020x_US.hex
serialapi_controller_static_ZW020x_ANZ.hex
serialapi_controller_static_ZW020x_HK.hex

serialapi_controller_static_ZWO030x_EU.hex
serialapi_controller_static_ZW030x_US.hex
serialapi_controller_static_ZW030x_ANZ.hex
serialapi_controller_static_ZW030x_HK.hex

This file contains the external EEPROM data with
home ID on the ZM12xxRE/ZM21xxE/ZM31xxC-E
module. The external EEPROM must only be
initialized once.

The compiled and linked serial API based static
controller sample application for the EU and US
versions of the ZW0102 based module.

The compiled and linked serial AP| based static
controller sample application for the ANZ, EU, HK
and US versions of the ZW0201 based module.

The compiled and linked serial API based static
controller sample application for the ANZ, EU, HK
and US versions of the ZW0301 based module.

Zensys A/S

Software Components

Page 13 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.3.1.13 SerialAPI_Slave

The Product\Bin\SerialAP|_Slave directory contains all files needed for running a serial API based slave
sample application on a Z-Wave module. The directory contains the following files:

serialapi_slave_ZW010x_EU.hex The compiled and linked serial API based slave sample

serialapi_slave_ZW010x_US.hex application for the EU and US versions of the ZW0102
based module.

serialapi_slave ZW020x_EU.hex The compiled and linked serial API based slave sample

serialapi_slave ZW020x_US.hex application for the ANZ, EU, HK and US versions of the

serialapi_slave _ZW020x_ANZ.hex ZW0201 based module.

serialapi_slave _ZW020x_HK.hex

serialapi_slave_ZW030x_EU.hex The compiled and linked serial AP| based slave sample

serialapi_slave ZW030x_US.hex application for the ANZ, EU, HK and US versions of the

serialapi_slave_ZW030x_ANZ.hex ZW0301 based module.

serialapi_slave_ZW030x_HK.hex

3.3.1.14 Smoke_Sensor

The Product\Bin\Smoke_Sensor directory contains all files needed for running a smoke sensor sample
application on a Z-Wave module. The directory contains the following files:

smokesensor_ZW020x_EU.hex The compiled and linked smoke sensor sample
smokesensor_ZW020x_US.hex application for the ANZ, EU, HK and US versions of the
smokesensor_ZW020x_ANZ.hex ZW0201 based module.
smokesensor_ZW020x_HK.hex

smokesensor_ZW030x_EU.hex The compiled and linked smoke sensor sample
smokesensor_ZWO030x_US.hex application for the ANZ, EU, HK and US versions of the
smokesensor_ZWO030x_ANZ.hex ZW0301 based module.

smokesensor_ZWO030x_HK.hex

Zensys A/S Software Components Page 14 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.3.2 Binary Sensor

The Product\Bin_Sensor directory contains sample source code for a binary sensor and battery operated
binary sensor application, which uses the 4 LEDs and the button on the interface module (see section
7.2.1 and 7.3.1).

Bin_Sensor.c These files contain the source code for the binary sensor’s application

Bin_Sensor.h state machine. The common API functions such as
ApplicationInitHW, ApplicationInitSW,
ApplicationNodelnformation, ApplicationPall,
ApplicationSlaveUpdate, ApplicationRfNotify and
ApplicationCommandHandler are defined here.

eeprom.h This header file defines the addresses where application data are
stored in the external EEPROM.

MK.BAT Batch file used to build ZW0102/ZW0201/ZW0301 based sample
applications in ANZ, EU, HK and US versions respectively. Refer to
chapter 7.1 regarding details about the build procedure.

3.3.3 Common

The Product\Common directory contains a set of standard make files needed for building the sample
applications. The make files define the compiler options, linker options and defines for the different library
types.

3.3.4 Development Controller

The Product\Dev_Ctrl directory contains sample source code for the development controller application
used on the ZM12xxRE Module mounted on the Z-Wave Development module. For further information
refer to section 7.4 and reference [15].

dev_ctrl.c These files contain the source code for the development controller’s

dev_ctrl_if.h application state machine. The common API functions such as
ApplicationInitHW, ApplicationInitSW,
ApplicationNodelnformation, ApplicationPoll,
ApplicationRfNotify and ApplicationCommandHandler are defined

here.
p_button.c Collection of functions and macros used to access the pushbuttons on
p_button.h the development module
eeprom.c These files define the functions for accessing the application data in
eeprom.h the external EEPROM and associated addresses.
MK.BAT Batch file used to build ZwW0102/2W0201/ZW0301 based sample

applications in ANZ, EU, HK and US versions respectively. Refer to
chapter 7.1 regarding details about the build procedure.

Zensys A/S Software Components Page 15 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.3.5 Door Bell

The Product\Doorbell directory contains sample source code for the door bell application used on the
Z-Wave Interface module. The Development Controller application can be used as push button to control
the door bell application. For further information refer to section 7.5.

bell.c These files contain the source code for the door bell’s application

bell.h state machine. The common API functions such as
ApplicationInitHW, ApplicationInitSW,
ApplicationNodelnformation, ApplicationPall,
ApplicationRfNotify and ApplicationCommandHandler are defined

here.
eeprom_slave.h This file contains various defines related to the external EEPROM.
MK.BAT Batch file used to build ZW0201/ZW0301 based sample applications

in ANZ, EU, HK and US versions respectively. Refer to chapter 7.1
regarding details about the build procedure.

3.3.6 10 _defines

The Product\lO_defines directory contains hardware definition files needed for building an application
e.g. the development controller sample application.

ZW_evaldefs.h This file contains definitions of the connector pins on the controller
board.
ZW _pindefs.h This file contains definitions of the connector pins on the

ZM12xxRE/ZM21xxE/ZM31xxC-E module, and macros for accessing
the 1/O pins. Refer to paragraph 6.1 regarding a detail description.

Zensys A/S Software Components Page 16 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.3.7 LED Dimmer

The Product\LED_Dimmer directory contains sample source code for a slave application on a Z-Wave
module, which uses the 4 LEDs on the interface module to simulate a light switch with a built in dimmer
(see section 7.6.2).

LEDdim.c These files contain the source code for the LED dimmer’s application

LEDdim.h state machine. The common API functions such as
ApplicationInitHW, ApplicationInitSW,
ApplicationNodelnformation, ApplicationPoll,
ApplicationSlaveUpdate, ApplicationRfNotify and
ApplicationCommandHandler are defined here.

eeprom.h This header file defines the addresses where application data are
stored in the external EEPROM.

MK.BAT Batch file used to build ZW0102/ZW0201/ZW0301 based sample
applications in ANZ, EU, HK and US versions respectively. Refer to
chapter 7.1 regarding details about the build procedure.

3.3.8 MyProduct

The Product\MyProduct directory contains sample source code for a slave application on a Z-Wave
module.

MyProduct.c These files contain the source code for the My Product’s application

MyProduct.h state machine. The common API functions such as
ApplicationinitHW, ApplicationInitSW,
ApplicationNodelnformation, ApplicationPoll,
ApplicationRfNotify and ApplicationCommandHandler are defined
here.

MK.BAT Batch file used to build ZW0102/Z2W0201/ZWQ0301 based sample
applications in ANZ, EU, HK and US versions respectively. Refer to
chapter 7.1 regarding details about the build procedure.

Zensys A/S Software Components Page 17 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.3.9 Production Test DUT

The Product\ProdTestDUT directory contains sample source code for a production test DUT application

on a Z-Wave module.

prodtestdut.c
prodtestdut.h

MK.BAT

These files contain the source code for the production test DUT’s
application state machine. The common API functions such as
ApplicationInitHW, ApplicationInitSW,
ApplicationNodelnformation, ApplicationPall,
ApplicationRfNotify and ApplicationCommandHandler are defined
here.

Batch file used to build ZW0102/ZW0201/ZWQ0301 based sample
applications in ANZ, EU, HK and US versions respectively. Refer to
chapter 7.1 regarding details about the build procedure.

3.3.10 Production Test Generator

The Product\ProdTestGen directory contains sample source code for a production test generator

application on a Z-Wave module.

Prod_test gen.c

These files contain the source code for the production test generator’'s
application state machine. The common API functions such as
ApplicationInitHW, ApplicationInitSW,
ApplicationNodelnformation, ApplicationPoll,
ApplicationRfNotify and ApplicationCommandHandler are defined
here.

MK.BAT Batch file used to build ZW0102/Z2ZW0201/ZW0301 based sample
applications in ANZ, EU, HK and US versions respectively. Refer to
chapter 7.1 regarding details about the build procedure.

Zensys A/S Software Components Page 18 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.3.11 Serial API

The Product\SerialAPI directory contains sample source code for the Serial API for the ZM12xxRE
module. The Serial API consists of this code together with the PC source code in the PC\SerialAPI
directory. For further information about the Serial API refer to section 7.5.

serialappl.c
serialappl.h

conhandle.c
conhandle.h

UART buf_io.c
UART_buf_io.h

MK.BAT

3.3.12 Smoke Detector

This module implements Serial API protocol handling. The module
parse the frames, calls the appropriate Z-Wave API library functions
and returns results etc. to the PC.

Routines for handling Serial API protocol between PC and Z-Wave
module.

Low-level routines for handling buffered transmit/receive of data
through the UART.

Batch file used to build ZW0102/Z2ZW0201/ZW0301 based sample
applications in ANZ, EU, HK and US versions respectively. Refer to
chapter 7.1 regarding details about the build procedure.

The Product\Smoke_Sensor directory contains sample source code for a smoke sensor application on a

Z-Wave module.

smokesensor.c
smokesensor.h

eeprom_slave.h

These files contain the source code for the smoke sensor’s
application state machine. The common API functions such as
ApplicationinitHW, ApplicationInitSW,
ApplicationNodelnformation, ApplicationPoll,
ApplicationRfNotify and ApplicationCommandHandler are defined
here.

This file contains various defines related to the external EEPROM.

MK.BAT Batch file used to build ZW0102/Z2W0201/ZWQ0301 based sample
applications in ANZ, EU, HK and US versions respectively. Refer to
chapter 7.1 regarding details about the build procedure.

Zensys A/S Software Components Page 19 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.3.13 Utilities

The Product\util_func directory contains some helpful functions that are used by several of the sample

applications.

App_RFSetup.a51

association.c
association.h

battery.c
battery.h

one_bhutton.c
one_bhutton.h

This file is an assembler file that should be used to define which RF setup is
to be used (ANZ/EU/HK/US) in the transmissions. Also if special values for
capacity match array RX/TX or Normal/Low power transmission levels are
needed then these can be defined here.

This file contains sample code that shows how association between nodes
could be implemented on a Z-Wave module. This sample code holds all
associations in RAM and the number of nodes/groupings possible using this
implementation is limited.

Applications using this collection of functions must implement three functions
(ApplicationStoreAll, ApplicationlInitAll, ApplicationClearAll). These should
handle the storage in nonvolatile memory if this is desired.

This file contains sample code that shows how battery operated devices may
implement power down, wake up notification and network update requests.
Applications using this collection must call the following functions at their
appropriate location:

UpdateWakeupCount — call from ApplicationInitSW to update the wakeup
counter which determines the wakeup interval on application level (200-
series) — Only called when Wakeupreason is WUT-Kicked.
InitRTCActionTimer — call from ApplicationInitSW, to activate the RTC timer.
(100-Series)

HandleWakeupFrame — call from ApplicationCommandHandler to handle
incoming COMMAND_CLASS WAKE_UP is received. Handles
WAKE_UP_INTERVAL_GET/SET/NO_MORE_INFORMATION.
SetDefaultBatteryConfiguration — is called from ApplicationInitHW when node
is reset, and from SetDefaultConfiguration. Sets the

default values for powerdown timeout, sleep time and networkupdate.
LoadBatteryConfiguration — call from LoadConfiguration. Loads the battery
related information from EEPROM and make them available for the running
application.

SaveBatteryConfiguration — call from SaveConfiguration. Saves the battery
related information to EEPROM.

StartPowerDownTimer — call from ApplicationInitSW and set as callback
function ZW_SEND_DATA methods after which the node should enter sleep
mode.

Please refer to the BatterySensor sample application for an example on how
this can be implemented.

Enables easy use of a button. The functions detect whether a button has
been pressed shortly or is being held. To initialise the button detection, run
OneButtonlnit() from ApplicationInitSW. And call OneButtonLastAction when
button information is needed (e.g. in ApplicationPoll()).

self_heal.c Support functions to implement Lost / Self Heal functionality. This file is
self_heal.h mandatory if the battery helper functions are used and ZW_SELF_HEAL is
defined. See the battery.c and bin_sensor.c source files for help on using the
functions.
Zensys A/S Software Components Page 20 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

slave_learn.c
slave_learn.h

The file contains sample code for how to handle learn mode on slave nodes.
These two files are used by all slave based sample code in the development
kit. The sample application should just call StartLearnModeNow() to enter
learnmode and transmit nodeinformation. The sample application should then
wait for the BOOL learnState to go FALSE before doing transmissions.

Zensys A/S

Software Components Page 21 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.4 Tools

The Tools directory contains various tools needed for building and debugging the sample applications.
All tools in this directory can freely be used for building Z-Wave applications.

3.4.1 Eeprom Loader

This directory contains tools used for downloading hex files to the external EEPROM on the ZM1206
module through the serial port. The external EEPROM on all the other Z-Wave modules can be updated
by the Z-Wave Programmer. Additional files are also added in case the external EEPROM is updated
using the Equinox Epsilon5 programmer.

eeploader_ZW0102.hex This program must be downloaded to the ZW0102 module before
downloading data to the external EEPROM. The program receives the
external EEPROM data via the serial port and copies it to the external
EEPROM. Only necessary to use in conjunction with the Epsilon5
programmer or when downloading hex files to the external EEPROM on
the ZM1206 module using the Z-Wave Programmer.

eeploader_7ZW0201.hex This program must be downloaded to the ZW0201 based module before
downloading data to the external EEPROM. The program receives the
external EEPROM data via the serial port and copies it to the external
EEPROM. Only necessary to use in conjunction with the Epsilon5
programmer

eeploader_ZW0301.hex This program must be downloaded to the ZW0301 based module before
downloading data to the external EEPROM. The program receives the
external EEPROM data via the serial port and copies it to the external
EEPROM. Only necessary to use in conjunction with the Epsilon5
programmer

eeploader.exe Used to download the extern_eep.hex file to external EEPROM via the
PC’s serial port. Refer to paragraph 8.7 for further details. Only
necessary to use in conjunction with the Epsilon5 programmer or when
downloading hex files to the external EEPROM on the ZM1206 module
using the Z-Wave Programmer.

doload.bat Used to download the extern_eep.hex file to external EEPROM via the
PC’s serial port. Only necessary to use in conjunction with the Epsilon5
programmer

The procedure to doanload hex files to the external EEPROM on the Z-Wave module using the Equinox
Epsilon5 programmer with the Developer’s Kit is as follows:

1. Create the relevant PPC file from eeploader_ZWO0x0x.hex file by the EQTools application.

2. Use the Epsilon5 programmer to download PPC file to the Z-Wave module.

3. Connect a RS-232 serial cable directly from the PC the Z-Wave interface module. Notice that
download is not done via the Epsilon5 programmer.

4. In case a ZW0201 based Development Controller Unit is used then remember to remove the short
circuit between RXD (J9) and LED1 (J1) and reinstall jumper J9 to enable the UART.

Zensys A/S Software Components Page 22 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5. Open a DOS prompt on your PC and go to the directory C:\DevKit_5 00\Product\Bin\... containing
the appropriate image file Extern_eep.hex. The doload.bat file must also be available in this directory
and is used to download the image file via the COM port. Notice: It is necessary to reset the
ZW0201/ZW0301 before downloading the image file to the external EEPROM.

6. Run doload.bat COMx (x = the number of the COM port the cable is attached to).

7. The PC application displays download progress and finally status of the download.

3.4.2 Equinox

This directory contains the documentation and software needed by the Equinox Epsilon5 programmer
when programming the ZW0102/ZW0201/2ZW0301 based modules. Remember that the Equinox
Epsilon5 programmer is replaced by the new Z-Wave programmer in the Developer’s Kit. This solution is
included because many customers have already establish production lines using the Equinox Epsilon5

programmer.

Configlt.exe

EQTools_v210 bh576i.exe

ZW0102-BASIC.PPM

ZW0201-BASIC.PPM

ZW0301-BASIC.PPM

INS10309-4 - Using the Epsilon5
for programming Z-Wave Single
Chips.pdf

The Configlt v6.04 program is used to update the Equinox
Epsilon5 programmer with new firmware v2.48. The generated
ZW0102/ZW0201/ZW0301 Equinox PPC files uses the new
format. Therefore is it necessary to upgrade the Equinox
Epsilon5 programmer delivered in Developer’s Kit v3.40 or older
before the PPC files using the new format can be downloaded.

The EQTools program is used to download the PPC files to the
Equinox Epsilon5 programmer. Via the buttons on the Equinox
Epsilon5 programmer is the hex file transferred to the
ZW0102/ZW0201/ZW0301 based module. PPC files provided in
Developer’s Kit v3.40 or older cannot be used by this version of
EQTools because the PPC format has changed.

Project default settings for the ZW0102 when embedding the hex
file in the PPC file using EQTools.

Project default settings for the ZW0201 when embedding the hex
file in the PPC file using EQTools.

Project default settings for the ZW0301 when embedding the hex
file in the PPC file using EQTools.

Users guide located in the directory: X:\data\SW_DOC\ on the
Developer’s Kit CD.

Zensys A/S

Software Components Page 23 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

343 ERTT

This directory contains the PC software and the embedded code for the Enhanced Reliability Test Tool.

(ERTT) For further details refer to [11].
The ERTT directory contains the following files:
PC\setup.exe

Z-Wave_Firmware\extern_eep.hex

Z-Wave_Firmware\serialapi_ctrl_single_ZW010x_EU.hex
Z-Wave_Firmware\serialapi_ctrl_single_ZW010x_US.hex

Z-Wave_Firmware\serialapi_ctrl_single_ZW020x_ANZ.hex
Z-Wave_Firmware\serialapi_ctrl_single_ZW020x_EU.hex
Z-Wave_Firmware\serialapi_ctrl_single_ZW020x_HK.hex
Z-Wave_Firmware\serialapi_ctrl_single_ZW020x_US.hex

Z-Wave_ Firmware\serialapi_ctrl_single_ ZW030x_ANZ.hex
Z-Wave_Firmware\serialapi_ctrl_single_ZW030x_EU.hex
Z-Wave_Firmware\serialapi_ctrl_single_ ZW030x_HK.hex
Z-Wave_Firmware\serialapi_ctrl_single_ZWO030x_US.hex

PC application.

This file contains the external
EEPROM data on the
ZM12xxRE/ZM21xxE/ZM31xxC-E
module. The external EEPROM must
only be initialized once.

The compiled and linked ERTT
application for the EU and US
versions of the ZW0102 based
module.

The compiled and linked ERTT
application for the ANZ, EU, HK and
US versions of the ZW0201 based
module.

The compiled and linked ERTT
application for the ANZ, EU, HK and
US versions of the ZW0301 based
module.

This directory contains a python script that is used for making dependency files when building the sample

3.4.4 IncDep
applications.
3.45 Intel UPnP

This directory contains Intel’s tools for UPnP technology helping software developers during
development, testing, and deployment of UPnP-compliant devices. These tools are used in conjunction

with the Z-Wave to UPnP bridge sample applications [8].

3.4.6 Make

This directory contains a DOS/Windows version of the GNU make utility. The make utility is used for

building the sample applications.

Zensys A/S Software Components

CONFIDENTIAL

Page 24 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.4.7 Mergehex

This directory contains a tool used for merging two files in Intel hex format. The tool is used for building
external EEPROM files in the sample code.

3.4.8 Programmer

This Programmer directory contains the PC software and ATMega128 firmware for the Programmer. For
further details refer to [14].

The Programmer directory contains the following files:

PC\setup.exe PC application.
PC\CP210x_VCP_Win2K_XP.exe USB driver.

ZDPO2A_Firmware\ATMegal28_ Firmware.hex The compiled and linked Z-Wave Programmer

application for the ATMega128 situated on the
ZDPO02A Development Platform.

Zensys A/S Software Components Page 25 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.4.9 PVT and RF Regulatory

This directory contains software used in connection with PVT and RF regulatory measurements on the
hardware. For a guideline how to carry out the measurements refer to [9] and [19].

The PVT_and_RF_regulatory directory contains the following files:

ZW0102_Fmax.hex

Used for measuring the lower frequency of the VCO (only on
ZW0102).

ZW0102_Fmin.hex

Used for measuring the higher frequency of the VCO (only on
ZW0102).

ZW0102_rx_eu.hex

Puts the ZW0102 in receive mode. European products.

ZW0201_rx_eu.hex

Puts the ZW0201 in receive mode. European products.

ZW0301_rx_eu.hex

Puts the ZW0301 in receive mode. European products.

ZW0102_rx_us.hex

Puts the ZW0102 in receive mode. US products.

ZW0201_rx_us.hex

Puts the ZW0201 in receive mode. US products.

ZW0301_rx_us.hex

Puts the ZW0301 in receive mode. US products.

ZW0102_TXcar_60_us.hex

ZW0102 constantly transmits a carrier (908.42MHz).

ZW0201_TXcar_us.hex

ZW0201 constantly transmits a carrier (908.42MHz).

ZW0301_TXcar_us.hex

ZW0102_TXcar_f0_eu.hex

ZW0102 constantly transmits a carrier (868.42MHz).

ZW0201_TXcar_eu.hex

)
)
ZW0301 constantly transmits a carrier (908.42MHz).
)
)

ZW0201 constantly transmits a carrier (868.42MHz).

ZW0301_TXcar_eu.hex

ZW0301 constantly transmits a carrier (868.42MHz).

ZW0102_TXgen.hex

SW loaded to a ZM1220 generating a digital Z-Wave Frame bit
stream. A FSK/FM signal generator is used to modulate the
signal.

ZW0102_TXmod_01 eu.hex

ZW0102 constantly transmits a modulated signal - 868.42MHz
+/-20kHz (output power setting: “01”).

ZW0102_TXmod_01 us.hex

ZW0102 constantly transmits a modulated signal - 908.42MHz
+/-20kHz (output power setting: “017).

ZW0102_TXmod_f0_eu.hex

ZW0102 constantly transmits a modulated signal - 868.42MHz
+/-20kHz (output power setting: “F0”).

ZW0201 _TXmod_eu.hex

Z\W0201 constantly transmits a modulated signal - 868.42MHz
+/-25kHz.

ZWO0301_TXmod_eu.hex

ZW0301 constantly transmits a modulated signal - 868.42MHz
+/-25kHz.

ZW0102_TXmod_60_us.hex

Z\W0102 constantly transmits a modulated signal - 908.42MHz
+/-20kHz.

ZW0201_TXmod_us.hex

ZW0201 constantly transmits a modulated signal - 908.42MHz
+/-25kHz.

ZW0301_TXmod_us.hex

ZW0301 constantly transmits a modulated signal - 908.42MHz
+/-25kHz.

Notice: Hex files for ZW0301 and ZW0201 using ANZ and HK frequencies are currently not available.

Contact Technical Services support@zen-sys.com to obtain these files.

Zensys A/S

Software Components

CONFIDENTIAL

Page 26 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.4.10 Python

This directory contains a python scripting language interpreter. Python is used for various purposes in
the sample code build process.

3.4.11 Zniffer

The Zniffer directory contains the Z-Wave protocol Zniffer program; the program can be used for viewing

the application commands send out on the RF media from a Z-Wave module. The tool consists of two

parts, an embedded part that should be downloaded to a Z-Wave module and a PC application that

should run on a PC attached to the Z-Wave module via the serial interface. For further details refer to

[12].

The Zniffer directory contains the following files:

PC\setup.exe PC application.

Z-Wave_Firmware\sniffer_ZWO010x_EU.hex The compiled and linked Zniffer application for the

Z-Wave_Firmware\sniffer ZW010x_US.hex EU and US versions of the ZW0102 based
module.

Z-Wave_ Firmware\sniffer_ZW020x_EU.hex The compiled and linked Zniffer application for the

Z-Wave_Firmware\sniffer_ZWO020x_US.hex ANZ, EU, HK and US versions of the ZW0201

Z-Wave_Firmware\sniffer_ZW020x_ANZ.hex based module.

Z-Wave_Firmware\sniffer_ZW020x_HK.hex

Z-Wave_Firmware\sniffer_ZW030x_EU.hex The compiled and linked Zniffer application for the

Z-Wave_Firmware\sniffer_ZWO030x_US.hex ANZ, EU, HK and US versions of the ZW0301

Z-Wave_Firmware\sniffer_ ZW030x_ANZ.hex based module.
Z-Wave_Firmware\sniffer_ZW030x_HK.hex

35 PC

The PC directory contains three PC sample applications demonstrating the use of the Z-Wave DLL and
Serial API.

3.5.1 Bin

The PC\Bin directory contains the program or installation executables of the PC sample applications.
InstallerTool\InstallerTool.exe The InstallerTool application.

ZWavePCController\Setup.Exe The PC Controller application.

ZWaveUPnPBridge\Setup.Exe The Z-WaveBridge application

Zensys A/S Software Components Page 27 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.5.2 InstallerTool

The PC\InstallerTool directory contains sample source code for a PC based Installer Tool using the
Serial API. Further readings on how to use the InstallerTool see [7].

InstallerTool.dsp Microsoft Development Environment 2003 project file containing
information at the project level and is used to build the project.
Application is implemented in C++.

3.5.3 Serial API

The PC\SerialAPI directory contains sample source code used by the PC application to communicate
with the ZW0102/2W0201/2ZW0301 based module via the serial API interface. Currently only used by the
PC based Installer Tool. Notice that future PC applications should be based on the Z-Wave DLL as
interface to the Z-Wave network. Refer to paragraph 7.5 regarding details about the embedded Serial
APl interface.

3.5.4 Source

The PC\Source directory contains the PC applications for the Microsoft Visual Studio 2005 environment.
All applications are implemented in C#.

3.5.4.1 Libraries
The PC\Source\Libraries directory contains various libraries used by the PC applications.

3.5.4.1.1 Transport Layer

The PC\Source\Libraries\ITransportLayer directory contains source code of the interface between the
transport layer, e.g. ZWRS232 and the DLL.

ITransportLayer.sln Microsoft Visual Studio 2005 solution file containing information at
the project level and is used to build the project. Application is
implemented in C#.

3.5.4.1.2 Z-Wave DLL
The PC\Source\Libraries\ZWave directory contains source code of the dynamic link library used by the

PC application to communicate with the ZW0102/Z2ZW0201/ZW0301 based module via the serial API
interface. Refer to [13] for further details.

ZWave.sln Microsoft Visual Studio 2005 solution file containing information at
the project level and is used to build the project. Application is
implemented in C#.

Zensys A/S Software Components Page 28 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.5.4.1.3 Z-Wave Command Class

The PC\Source\Libraries\ZWaveCmdClass directory contains source code for the XML parser, which
enables parsing of Z-Wave frames by the Zniffer and generating frames by the PC Controller.

ZWaveCmdClass.sln Microsoft Visual Studio 2005 solution file containing information at
the project level and is used to build the project. Application is
implemented in C#.

3.5.4.1.4 Z-Wave RS232

The PC\Source\Libraries\ZwaveRS232 directory contains source code for the serial port transport layer
which is interface by the ITransportLayer.

ZwaveRS232.sIn Microsoft Visual Studio 2005 solution file containing information at
the project level and is used to build the project. Application is
implemented in C#.

3.5.4.2 Sample Application
The PC\Source\SampleApplication contains the various the PC applications

3.5.4.2.1 Zensys Classes

The PC\Source\SampleApplication\ZensysClasses directory contains various classes used by the PC
applications.

ZCmdClass.cs This class provides a number of methods for device and command
class types and definitions. Application is implemented in C#.

3.5.4.2.2 Z-Wave PC Controller

The PC\Source\SampleApplication\ZWavePCController directory contains sample source code for a PC
based controller using the Z-Wave DLL etc. Further reading on how to use the PC based Controller see
[6].

ZWavePCController.sIn Microsoft Visual Studio 2005 solution file containing information at
the project level and is used to build the project. Application is
implemented in C#.

3.5.4.2.3 Z-Wave UPnP Bridge

The PC\Source\SampleApplication\ZWaveUPnPBridge directory contains sample source code for a PC
based Z-Wave Bridge using the Z-Wave DLL etc. Further readings on how to use the Z-Wave UPnP
Bridge see [8].

ZWaveUPnPBridge.sln Microsoft Visual Studio 2005 solution file containing information at
the project level and is used to build the project. Application is
implemented in C#.

Zensys A/S Software Components Page 29 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

3.6 Graphics

The Graphics directory contains an icon file showing the Z-Wave logo used by PC applications.

Z_wave.ico Z-Wave icon file.

Zensys A/S Software Components Page 30 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

4 Z-WAVE SOFTWARE ARCHITECTURE

Z-Wave software is designed on polling of functions, command complete callback function calls, and
delayed function calls.

The software is split into two groups of program modules: Z-Wave basis software and Application
software. The Z-Wave basis software includes system startup code, low-level poll function, main poll
loop, Z-Wave protocol layers, and memory and timer service functions. From the Z-Wave basis point of
view the Application software include application hardware and software initialization functions,
application state machine (called from the Z-Wave main poll loop), command complete callback
functions, and a received command handler function. In addition to that the application software can
include hardware drivers.

Application state Comnleted Ed
machine Completed A
callback
function |
SW Init Received
command
handler

Application modules

Timer

Z-Wave Application layer

i i
| i
I |
I I
i i
I |
i I
| i
| |
I I
i I
I i
i I
| i
: 3
i

! Mainloop |
i i
| |
I I
i ¢ |
} Low-level poll i
i

I I
I I
i i
I |
i I
| i
I |
I I
i |
I |
i I
| i
I I
I I
i i
I |
I I
i i
| I
I I
i I
|]

Z-Wave protocol layers

[]
=

Figure 1 Software architecture

Zensys A/S Z-Wave software Architecture Page 31 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

4.1 Z-Wave System Startup Code

The Z-Wave modules include the system startup function (main). The Z-Wave system startup function
first initializes the Z-Wave hardware and then calls the application hardware initialization function
ApplicationInitHW. Then the Z-Wave software is initialized (including the software timer used by the
timer module) and finally the application software initialization function ApplicationInitSW is called.
Execution then proceeds in the Z-Wave main loop.

On the ZW0201 are there reserved a small memory area in SRAM that are not initalized by the startup
code. These bytes can be used by an application to store information which should not be cleared by a
software reset (or a WUT wakeup). The area is defined by NON_ZERO_START_ADDR and and
NON_ZERQO_SIZE in the header file ZW_non_zero.h.

4.2 Z-Wave Main Loop

The Z-Wave main loop will call the list of Z-Wave protocol functions, including the ApplicationPoll
function, the ApplicationCommandHandIler function (if a frame was received) and the RTC timer
function in round robin order. The functions must therefore be designed to return to the caller as fast as
possible to allow the CPU to do other tasks. Busy loops are not allowed. This will make it possible to
receive Z-Wave data, transfer data via the UART and check user-activated buttons “simultaneously”.

For production testing the application can be forced into the ApplicationTestPoll function instead of the
ApplicationPoll function.

4.3 Z-Wave Protocol Layers

When the application layer requests a transmission of data to another node, the Z-Wave protocol layer

adds a frame header and a checksum to the data before transmission. The protocol layer also handles

frame retransmissions, as well as routing of frames through “repeater” nodes to Z-Wave nodes that are
not within direct RF reach. When the frame transmission is completed, an application-specified transmit
complete callback function is called. The transmission complete callback function includes a parameter
that indicates the transmission result.

The Z-Wave protocol layer also provides support for operation in Zensor Nets, i.e. environments of
entirely battery-operated nodes. Seen from the application layer, the only difference from a normal Z-
Wave Network is a significantly higher latency as it may take some time to get in contact with a battery-
operated node.

The Zensor Net Routing Slave is an extension to the normal Routing Slave library.

The Z-Wave frame receiver module (within the MAC layer) can include more than one frame receive
buffer, so the upper layers can interpret one frame while the next frame is received.

4.4 Z-Wave Application Layer

The application layer provides the interface to the communications environment which is used by the
application process. The application software is located in the hardware initialization function
ApplicationInitHW, software initialization function ApplicationInitSW, application state machine (called
from the Z-Wave main poll loop) ApplicationPoll, command complete callback functions, and a receive
command handler function ApplicationCommandHandler.

Zensys A/S Z-Wave software Architecture Page 32 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

The application implement communication on application level with other nodes in the network. On
application level is a framework defined of Device and Command Classes [1] to obtain interoperability
between Z-Wave enabled products from different vendors. The basic structure of these commands
provides the capability to set parameters in a node and to request parameters from a node responding
with a report containing the requested parameters. The Device and Command Classes are defined in the
header file ZW_classcmd.h.

Wireless communication is by nature unreliable because a well defined coverage area simply does not
exist since propagation characteristics are dynamic and unpredictable. The Z-Wave protocol minimizes
these "noise and distortion" problems by using a transmission mechanisms of the frame there include
two re-transmissions to ensure reliable communication. In addition are single casts acknowledged by the
receiving node so the application is notified about how the transmission went. All these precautions can
unfortunately not prevent that multiple copies of the same frame are passed to the application. Therefore
is it very important to implement a robust state machine on application level there can handle multiple
copies of the same frame. Below are shown a couple of examples how this can happen:

Node A Node B
Set Cmd

 *

pok

Random)
backoff
\
Ack
4~——————"’””——__-—__-——__-—_—-——_—- Time
\ 4 v
Figure 2 Multiple copies of the same Set frame
Zensys A/S Z-Wave software Architecture Page 33 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

Node A

S—
L R
ey
JE.

e
—

v v

Figure 3 Multiple copies of the same Get/Report frame

Node B

Time

A Z-Wave protocol is designed to have low latency on the expense of handling simultaneously
communication to a number of nodes in the Z-Wave network. To obtain this is the number of random
backoff values limited to 4 (0, 1, 2 and 3). The figure below shows how simultaneous communication to
even a small number of nodes easily can block the communication completely.

Zensys A/S

Z-Wave software Architecture

CONFIDENTIAL

Page 34 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Node A Nodes within direct range

Get Cmd as Broadcast

100% of the nodes responds

|

25% of the nodes responds (RB=0)

I

*

25% of the nodes responds (RB=1)

T

25% of the nodes responds (RB=2) S

?

25% of the nodes responds (RB=3) I

*

Time
v v

Figure 4 Simultaneous communication to a number of nodes
Simultaneous communication to nodes in a Z-Wave network which requires a response from the nodes

in question must therefore be avoided in the application.

45 Z-Wave Software Timers

The Z-Wave timer module is designed to handle a limited number of simultaneous active software timers.
The Z-Wave basis software reserves some of these timers for protocol timeouts.

A delayed function call is initiated by a TimerStart API call to the timer module, which saves the function
address, sets up the timeout value and returns a timer-handle. The timer-handle can be used to cancel
the timeout action e.g. an action completed before the time run out.

The timer can also be used for frequent inspection of special hardware e.g. a keypad. Specifying the time
settings to 50 msec and repeating forever will call the timer call back function every 50 msec.

Zensys A/S Z-Wave software Architecture Page 35 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

4.6

Z-Wave Hardware Timers

The ZW0102/ZW0201 has a number of hardware timers/counters. Some are reserved by the protocol
and others are free to be used by the application as shown in the table below:

Table 1, ZW0102/ZW0201/ZW0301 hardware timer allocation

ZW0102 ZW0201 Z\W0301
TIMERO Available for the application Protocol system clock Protocol system clock
TIMER1 Available for the application | Available for the application | Available for the application
in case the UART API is not
used
TIMER2 PWM/Timer API PWM/Timer API PWM/Timer API
TIMER3 Protocol system clock Not available Not available

The TIMERO and TIMER1 are standard 8051 timers/counters.

4.7

Z-Wave Hardware Interrupts

Application interrupt functions must use 8051 register set 0. The Z-Wave protocol uses 8051 register set

1 for protocol ISR’s, see table below regarding application ISR availability:

Table 2, ZW0102/2W0201/ZW0301 Application ISR avialability

ZW0102 ZW0201 ZW0301
INUM_INTO INUM_INTO INUM_INTO
INUM_TIMERO INUM_INT1 INUM_INT1
INUM_TIMER1 INUM_TIMER1 INUM_TIMER1
INUM_TIMER2 INUM_SERIAL INUM_SERIAL
INUM_SERIALO INUM_SPI INUM_SPI
INUM_ADC INUM_TRIAC INUM_TRIAC
INUM_GP_TIMER INUM_GP_TIMER
INUM_ADC INUM_ADC

Refer to ZW010x,.h ZW020x, and ZW030x.h header files with respect to ISR definitions. For examples
refer to the sample applications.

Zensys A/S Z-Wave software Architecture Page 36 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

4.8 Z-Wave Nodes

From a protocol point of view there are seven types of Z-Wave nodes: Portable Controller nodes, Static
Controller nodes, Installer Controller nodes, Bridge Controller nodes, Slave nodes, Routing Slave nodes
and Enhanced Slave nodes. All controller based nodes stores information about other nodes in the
Z-Wave network. The node information includes the nodes each of the nodes can communicate with
(routing information). The Installation node will present itself as a Controller node, which includes extra
functionality to help a professional installer setup, configure and troubleshoot a Z-Wave network. The
bridge controller node stores information about the nodes in the Z-Wave network and in addition is it
possible to generate up to 128 Virtual Slave nodes.

4.8.1 Z-Wave Portable Controller Node

The software components of a Z-Wave portable controller are split into the controller application and the
Z-Wave-Controller basis software, which includes the Z-Wave protocol layers and control of the various
data stored into the non-volatile memory.

Portable controller nodes include an external EEPROM in which the non-volatile application data area
can be placed. The Z-Wave basis software has reserved the first area of the external EEPROM. The
physical application memory offset is defined in the header file “ZW_eep_addr.h”.

Zensys A/S Z-Wave software Architecture Page 37 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Controller
Application

HW Init
Controller API

y
Memory API f
N . Basis API Timer API RTC API

Appl. data

Timer RTC

External Z-Wave
EEPROM Controller

Mainloop

Z-Wave data

I

Transport API

" EEPROM/Flash

v

Z-Wave protocol

RF Hardware

i

Figure 4 Portable controller node architecture

The Portable Controller node has a unique home ID number assigned, which is stored in the Z-Wave
basis area of the external EEPROM. Care must be taken, when reprogramming the external EEPROM,
that different controller nodes do not get the same home ID number. Refer to paragraph 8.7 regarding a
description of external EEPROM programming.

When new Slave nodes are registered to the Z-Wave network, the Controller node assigns the home ID
and a unique node ID to the Slave node. The Slave node stores the home ID and node ID.

When a controller is primary, it will send any networks changes to the SUC node in the network.
Controllers can request network topology updates from the SUC node.

When developing application software the header file “ZW_controller_api.h” also include the other
Z-Wave API header files e.g. ZW_timer_api.h.

The following define must be set when compiling the application: ZW_CONTROLLER.

Zensys A/S Z-Wave software Architecture Page 38 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

The application must be linked with ZW_CONTROLLER_PORTABLE_ZW=S.LIB
(* = 010X for ZW0102 modules, etc).

4.8.2 Z-Wave Static Controller Node

The software components of a Z-Wave static controller node are split into a Static Controller application
and the Z-Wave Static Controller basis software, which includes the Z-Wave protocol layers and control
of the various data stored into the non-volatile memory.

The difference between the static controller and the controller described in chapter 4.8.1 is that the static
controller cannot be powered down, that is it cannot be used for battery-operated devices. The static
controller has the ability to look for neighbors when requested by a controller. This ability makes it
possible for a primary controller to assign static routes from a routing slave to a static controller.

The Static Controller can be set as a SUC node, so it can sends network topology updates to any
requesting secondary controller. A slave static controller not functioning as SUC can also request
network Topology updates.

When developing application software the header file “ZW_controller_static_api.h” also include the other
Z-Wave API header files e.g. ZW_timer_api.h.

The following define is being included compiling the application: ZW_CONTROLLER_STATIC.

The application must be linked with ZW_CONTROLLER_STATIC_ZW=S.LIB
(* = 010X for ZW0102 modules, etc).

4.8.3 Z-Wave Installer Controller Node

The software components of a Z-Wave Installer Controller are split into an Installer Controller application
and the Z-Wave Installer Controller basis software, which includes the Z-Wave protocol layer.

The Installer Controller is essentially a Z-Wave Controller node, which incorporates extra functionality
that can be used to implement controllers especially targeted towards professional installers who support
and setup a large number of networks.

The following define must be set when compiling the application: ZW_INSTALLER

The application must be linked with ZW_CONTROLLER_INSTALLER_ZW=S.LIB
(* = 010X for ZW0102 modules, etc).

4.8.4 Z-Wave Bridge Controller Node

The software components of a Z-Wave Bridge Controller node are split into a Bridge Controller
application and the Z-Wave Bridge Controller basis software, which includes the Z-Wave protocol layer.

The Bridge Controller is essential a Z-Wave Static Controller node, which incorporates extra functionality
that can be used to implement controllers, targeted for bridging between the Z-Wave network and others
network (ex. UPnP).

The Bridge application interface is an extended Static Controller application interface, which besides the
Static Controller application interface functionality gives the application the possibility to manage Virtual
Slave nodes. A Virtual Slave node is a slave node, which physically resides in the Bridge Controller. This
makes it possible for other Z-Wave nodes to address up to 128 Slave nodes that can be bridged to some
functionality or to devices, which resides on a foreign Network type.

Zensys A/S Z-Wave software Architecture Page 39 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

When developing application software the header file “ZW_controller_bridge api.h” also include the other
Z-Wave API header files.

The following define is being included compiling the application: ZW_CONTROLLER_BRIDGE.

The application must be linked with ZW_CONTROLLER_BRIDGE_ZW=*S.LIB
(* = 010X for ZW0102 modules, etc).

4.8.5 Z-Wave Slave Node

The software components of a Z-Wave slave node are split into a Slave application and the Z-Wave-
Slave basis software, which includes the Z-Wave protocol layers.

Slave
Application

Slave API

J/ Basis API

Timer API

Memory API

Timer

Z-Wave
Appl. data Slave

M

*

Transport API

Z-Wave data
- Data Flash Area

Z-Wave protocol

RF Hardware

®
\\i_d// Z-Wave Slave

Figure 5 Slave node architecture

Slave nodes have an area of approximately 4 Kbytes in the flash reserved for storing data, but only 125
bytes can be used directly. The Z-Wave basis software reserve the first part of this area, and the last part
of the area are reserved for the application data. The physical application memory offset is defined in the
header file “ZW_eep_addr.h”.

Zensys A/S Z-Wave software Architecture Page 40 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

The home ID and node ID of a new node is zero. When registering a slave node to a Z-Wave network
the slave node receive home and node ID from the networks primary controller node. These ID’s are
stored in the Z-Wave basis data area in the flash.

The slave can send unsolicited broadcasts and non-routed singlecasts. Further it can respond with a
routed singlecast (response route) in case another node has requested this by sending a routed
singlecast to it. A received multicast or broadcast results in a response route without routing.

When developing application software the header file “ZW_slave_api.h” also include the other Z-Wave
API header files e.g. ZW_timer_api.h.

The following define must be set when compiling the application: ZW_SLAVE.

The application must be linked with ZW_SLAVE_ZW=S.LIB
(* = 010X for ZW0102 modules, etc).

4.8.6 Z-Wave Routing Slave Node

The software components of a Z-Wave routing slave node are split into a Slave application and the
Z-Wave-Slave basis software, which includes the Z-Wave protocol layers. Refer to Figure 5.

The routing slave is an extension to the basic slave node. From a functionality point of view, the routing
slave is somewhere between a controller and a slave. While a slave can only react to incoming
communication, a routing slave is also capable of initiating communication. Examples of a routing slave
could be a wall control or temperature sensor. If a user activates the wall control, the routing slave sends
an “on” command to a lamp (slave).

The routing slave does not have a complete routing table. Frames are sent to destinations configured
during association. The association is performed via a controller. If routing is needed for reaching the
destinations, it is also up to the controller to calculate the routes.

Routing slave nodes have an area of 4352 bytes in the flash reserved for storing data, but only 125 bytes
can be used directly. The Z-Wave basis software reserve the first part of this area, and the last part of
the area are reserved for the application data. The physical application memory offset is defined in the
header file “ZW_eep_addr.h”.

The home ID and node ID of a new node is zero. When registering a slave node to a Z-Wave network
the slave node receive home and node ID from the networks primary controller node. These ID’s are
stored in the Z-Wave basis data area in the flash.

The routing slave can send unsolicited and non-routed broadcasts, singlecasts and multicasts.
Singlecasts can also be routed. Further it can respond with a routed singlecast (response route) in case
another node has requested this by sending a routed singlecast to it. A received multicast or broadcast
results in a response route without routing.

A temperature sensor based on a routing slave may be battery operated. To improve battery lifetime, the
application may bring the node into sleep mode most of the time. Using the wake-up timer (WUT), the
application may wake up once per second, measure the temperature and go back to sleep. In case the
measurement exceeded some threshold, a command (e.g. “start heating”) may be sent to a heating
device before going back to sleep.

A special case of a battery-operated routing slave is the Frequently Listening Routing Slave (FLiRS).
This is a normal Routing Slave configured to listen for traffic in every wake-up interval. One usage for a
FLIRS could be as the chime node in a wireless doorbell system.

In general, battery-operated nodes are not used as repeaters for routing.

When developing application software the header file “ZW_slave_routing_api.h” also include the other
Z-Wave API header files e.g. ZW_timer_api.h.

Zensys A/S Z-Wave software Architecture Page 41 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

The following define will be generated by the headerfile, if it does not already exist when when compiling
the application: ZW_SLAVE.

The application must be linked with ZW_SLAVE_ROUTING_ZW=S.LIB
(* = 010X for ZW0102 modules, etc).

4.8.7 Z-Wave Enhanced Slave Node

The Z-Wave enhanced slave has the same basic functionality as a Z-Wave routing slave node, but
because of more features on the hardware more software components are available.

Slave
Application

Slave API

|
I
I
I
I
!
I
i :I
! Basis API
I
| Timer API RTC API
} Memory API
I
|
! Timer RTC
e Appl. data ~ Z-Wave
Slave

External Transport API

EEPROM T
——— Z-Wave

Z-Wave protocol

EEPROM
RF Hardware

o
\\k__d// Z-Wave Slave

Figure 6 Enhanced slave node architecture

Enhanced slave nodes have an external EEPROM and an RTC/WUT. The external EEPROM is used as
non volatile memory instead of FLASH. The Z-Wave basis software reserves the first area of the external
EEPROM, and the last area of the EEPROM are reserved for the application data. The physical
application memory offset is defined in the header file “ZW_eep_addr.h”.

When developing application software the header file “ZW_slave_32_api.h” also include the other
Z-Wave API header files e.g. ZW_timer_api.h.

Zensys A/S Z-Wave software Architecture Page 42 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

The following define will be generated by the headerfile, if it does not already exist when compiling the
application: ZW_SLAVE and ZW_SLAVE_32.

The application must be linked with ZW_SLAVE_ENHANCED_ZW=*S.LIB
(* = 010X for ZW0102 modules, etc).

4.8.8 Z-Wave Zensor Net Routing Slave Node

The Zensor Net Routing Slave node is basically a routing slave node configured as Frequently Listening
Routing Slave. The extra features are

e Zensor Net binding
e Zensor Net flooding

Binding is an alternative to classic Z-Wave inclusion. Where a controller is needed to perform inclusion,
any Zensor Net node can bind all other Zensor Net nodes. Binding has a strong resemblance to classic
Z-Wave inclusion, but it does not replace inclusion. Zensor Nets use a reserved range of Z-Wave Home
ID’s. A Zensor Net Routing Slave node can be part of a Z-Wave Network and a Zensor Net at the same
time. As a consequence, the Zensor Net Routing Slave node must be able to hold the following
informations internally:

e Z-Wave HomelD (32 bits)
e Z-Wave nodelD (8 bits)
e Zensor Net ID (16 bits)
e Zensor Net nodelD (8 bits)

Flooding is a special property only intended for emergency applications such as networked smoke
detectors. Zensor Net Routing Slave nodes are capable of forwarding broadcast frames without
generating loops. At the same time, special care is taken to ensure that collisions are kept at an
acceptable level.

Zensor Net Routing slave nodes have an area of 4352 bytes in the flash reserved for storing data, but
only 125 bytes can be used directly. The Z-Wave basis software reserve the first part of this area, and
the last part of the area are reserved for the application data. The physical application memory offset is
defined in the header file “ZW_eep_addr.h”.

The home ID and node ID of a new node is zero. When registering a Zensor Net Routing Slave node to a
Z-Wave network the Zensor Net Routing Slave node receive home and node ID from the networks
primary controller node. These ID’s are stored in the Z-Wave basis data area in the flash.

The Zensor Net Routing Slave can send unsolicited and non-routed broadcasts, singlecasts and
multicasts. Singlecasts can also be routed. Further it can respond with a routed singlecast (response
route) in case another node has requested this by sending a routed singlecast to it. A received multicast
or broadcast results in a response route without routing.

Zensys A/S Z-Wave software Architecture Page 43 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Normally, a Zensor Net Routing Slave is battery operated. To improve battery lifetime, the application will
bring the node into sleep mode most of the time. Using the wake-up timer (WUT), the application may
wake up once per second or even less often. At every wake-up, the Zensor Net Routing Slave node may
do some measurements, listen for traffic and go back to sleep.

An example of Zensor Net Routing Slave nodes is in networked smoke detectors. The binding allows an
installer to associate a number of devices without the help of a controller. The flooding allows the installer
to place nodes wherever he likes without having to perform any new network discovery. At the same
time, the flooding makes the detector network insensitive to failing nodes; be that failing hardware or
drained battery.

When developing application software the header file “ZW_slave_sensor_api.h” also include the other
Z-Wave API header files e.g. ZW_slave_routing_api_api.h.

The following define will be generated by the headerfile, if it does not already exist when when compiling
the application: ZW_SLAVE. _SENSOR

The application must be linked with ZW_SLAVE_SENSOR_ZW=S.LIB
(* = 010X for ZW0102 modules, etc).

Zensys A/S Z-Wave software Architecture Page 44 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

4.8.9 Adding and Removing Nodes to/from the network

Its only controllers that can add new nodes to the Z-Wave network, and reset them again is the primary
or inclusion controller. The home ID of the Primary Z-Wave Controller identifies a Z-Wave network.

Information about the result of a learn process is passed to the callback function in a variable with the
following structure:

typedef struct LEARN_INFO _

BYTE bStatus; /* Status of learn mode */
BYTE bSource; /* Node id of the node that send node info */
BYTE *pCmd; /* Pointer to Application Node information */
BYTE bLen; /* Node info length */

} LEARN_INFO;

When adding nodes to the network the controller have a number of choices of how to add and what
nodes to add to the network.

Adding a node normally.

The normal way to add a node to the network is to use ZW_AddNodeToNetwork() function on the
primary controller, and use the function ZW_SetLearnMode() on the node that should be included into
the network.

Adding a new controller and make it the primary controller

A primary controller can add a controller to the network and in the same process give the role as primary
controller to the new controller. This is done by using the ZW_ControllerChange() on the primary
controller, and use the function ZW_SetLearnMode() on the controller that should be included into the
network.. Note that the original primary controller will become a secondary controller when the inclusion
is finished.

Create a new primary controller

When there is a Static Update Controller (SUC) in the network then it is possible to create a new primary
controller if the original primary controller is lost or broken. This is done by using the
ZW_CreateNewPrimary() function on the SUC, and use the function ZW_SetLearnMode() on the
controller that should become the new primary controller in the network.

NOTE: A new primary controller will when adding new nodes use the first free node ID starting from 1.

Zensys A/S Z-Wave software Architecture Page 45 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

The table below lists the options valid on the different types of Controller libraries.

Table 3. Controller functionality

Library Node management
used :
ZW_AddNodeToNetwork | ZW_RemoveNodeFromNetwork | ZW_ControllerChange | ZW_CreateNewPrimary
Static When Secondary
Primary Primary Primary and only when
Controller .
configured as SUC
(Portable) . . .
Controller Primary Primary Primary Not allowed
Installer . . .
Controller Primary Primary Primary Not allowed
Bridge | Possible but should | Possible but should notbe | -0SSiPIe but 1 5 o cible but should
should not be
Controller not be used used used not be used

Careful considerations should be made as to how the application should implement the process of
adding a new controller. Generally speaking the ZW_CreateNewPrimary() option should never be readily
available to end-users, since it can be devastating to a network because the user might end up having
multiple primary controllers in the network. Another thing to note is that having a Static controller, as a
primary controller is only optimal when no portable Controllers exist in the network. A portable Controller
offers more flexibility in terms of adding and removing nodes to/from the network since it can be moved
around and will report any changes to a Static Controller configured to be a SUC. With these thoughts in
mind it is recommended that a network always have one portable controller and if that is not possible, the
Primary Static controller should change to secondary when the user wants to include a portable
Controller of some sorts.

The most optimal controller setup for networks with several controllers consists of a Static Controller
acting as SUC, a portable Primary controller for adding and removing nodes to the network. Controllers
besides these two should act as secondary controllers, which from time to time checks with the SUC to
get any network updates.

This way the network can be reconfigured and enhanced by using the portable primary controller and all
controllers in the network will be able to get the changes from the SUC without user intervention.

SUC ID Server

A SUC with enabled node ID server functionality is called a SUC ID Server (SIS). The SIS becomes the
primary controller in the network because it now has the latest update of the network topology and
capability to include/exclude nodes in the network. When including a controller to the network it becomes
an inclusion controller because it has the capability to include/exclude nodes in the network via the SIS.
The inclusion controllers network topology is dated from last time a node was included or it requested a
network update from the SIS.

Zensys A/S Z-Wave software Architecture Page 46 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

4.8.10 The Automatic Network Update

A Z-Wave network consists of slaves, a primary controller and secondary controllers. New nodes can
only be added and removed to/from the network by using the primary controller. This could cause
secondary controllers and routing slaves to misbehave, if for instance a preferred repeater node is
removed. Without automatic network updating a new replication has to be made from the primary
controller to all secondary controllers and routing slaves should also be manually updated with the
changes. In networks with several controller and routing slave nodes, this process will be cumbersome.

To automate this process, an automatic network update scheme has been introduced to the Z-Wave
protocol. To use this scheme a static controller should be available in the network. This static controller
should be dedicated to hold a copy of the network topology and the latest changes that have occurred to
the network. The static controller used in the Automatic update scheme is called the Static Update
Controller (SUC).

Each time a node is added, deleted or a routing change occurs, the primary controller will send the node
information to the SUC. Secondary controllers can then ask the SUC if any updates are pending. The
SUC will then in turn respond with any changes since last time this controller asked for updates. On the
controller requesting an update, ApplicationControllerUpdate will be called to notify the application that
a new node has been added or removed in the network.

The SUC holds up to 64 changes of the network. If a node requests an update after more than 64
changes occurred, then it will get a complete copy (see ZW_RequestNetWorkUpdate).

Routing slaves have the ability to request updates for its known destination nodes. If any changes have
occurred to the network, the SUC will send updated route information for the destination nodes to the
Routing slave that requested the update. The Routing slave application will be notified when the process
is done, but will not get information about any changes to its routes.

If the primary controller sends a new node’s node information and its routes to the SUC while it is
updating a secondary controller, the updating process will be aborted to process the new nodes
information.

Zensys A/S Z-Wave software Architecture Page 47 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5 Z-WAVE APPLICATION INTERFACES

The Z-Wave basis software consists of a number of different modules. Time critical functions are written
in assembler while the other Z-Wave modules are written in C. The Z-Wave API consists of a number of
C functions which give the application programmer direct access to the Z-Wave functionality.

Zensys A/S Z-Wave Application Interfaces Page 48 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.1 Z-Wave Libraries

5.1.1 Library Functionality

Each of the API's provided in the Developer’s Kit contains a subset of the full Z-Wave functionality; the
table below shows what kind of functionality the API’s support independent of the network configuration:

Table 4. Library functionality
Slave Routing [Sensor |[Enhanced|Portable [Static Installer Bridge
Slave Slave Slave Controller |Controller|Controller |Controller

Basic Functionality
Singlecast

Multicast

Broadcast

UART support

SPI support

IADC support

[TRIAC control
PWM/HW timer support
Power management
Real time clock (only
ZW0102)

SW timer support
Controller replication - - -
Promiscuous mode - - -
Routing table information

X

Vx| x| x|
v x| ||| x|
v x| ||| x|

Cx || x|} <

x
x
x
XXX XXX XXX X

XX X[XXX XXX X

x| >

XIX[PXX| XXX X[| XXX X
XIX[PXX| XXX X[| XXX X

x

Memory Location
Non-volatile RAM in flash X X X - - - - -
Non-volatile RAM in - - - X
EEPROM

x
x
x
x

Network Management
Network router (repeater) X X X X - X - -
IAssign routes to routing - - - - X X X X
slave
Routing slave - X X X - - - -
functionality
IAccess to routing table - - - - X - X -
Maintain virtual slave - - - - - - - X?
nodes

Zensor Net Support
Zensor Binding - - X - - - - -
Zensor Flooding - - X - - - - -

' Do not apply for virtual slaves

2 Only when secondary controller

Zensys A/S Z-Wave Application Interfaces Page 49 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.1.1.1 Library Functionality without a SUC/SIS

Some of the API’s functionality provided on the Developer’s Kit depends on the network configuration.
The table below shows what kind of functionality the API’s support without a SUC/SIS in the Z-Wave
network:

Table 5. Library functionality without a SUC/SIS

Slave Routing [Sensor |[Enhanced [Portable [Static Installer [Bridge
Slave Slave Slave Controller|Controller |Controller Controller
Network Management
Controller replication - - - - X X X X
Controller shift - - - - X X X X
Create new primary - - - - - - - -
controller
Request network updates - - - - - - - -
Request rediscovery of a - - - - % X' X' X'
node
Remove failing nodes - - - - % % X' X'
Replace failing nodes - - - - % % X' X'
“I'm lost*“ — cry for help - X X X X X X X
“I'm lost* — provide help - - - - - - - -
Provide routing table info - - - - X X X X
' Only when primary controller
Zensys A/S Z-Wave Application Interfaces Page 50 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

51.1.2

Library Functionality with a SUC

Some of the API’s functionality provided on the Developer’s Kit depends on the network configuration.
The table below shows what kind of functionality the API’s support with a Static Update Controller (SUC)
in the Z-Wave network:

Table 6. Library functionality with a SUC

Slave Routing [Sensor |[Enhanced |[Portable [Static Installer [Bridge
Slave Slave Slave Controller [Controller |Controller Controller

Network Management
Controller replication - - - - X X X X
Controller shift - - - - X X? X X?
Create new primary - - - - - x° - x®
controller
Request network updates - X X X X X X X
Request rediscovery of a - - - - x1 X1 X1 X1
node
Remove failing nodes - - - - X X' X' X'
Replace failing nodes - - - - X X % %
Set static ctrl. to SUC - - - - X X % %
Work as SUC - - - - - X - X
\Work as primary controller X X X X
“I'm lost* — cry for help - X X X X X X
“I'm lost“ — provide help - xX* x° X - X X° X
Provide routing table info - - - - X X X X

2 Only when primary controller and not SUC

® Only when SUC and not primary controller

* Only if “always listening”

Zensys A/S

Z-Wave Application Interfaces

CONFIDENTIAL

Page 51 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.1.1.3 Library Functionality with a SIS

Some of the API’s functionality provided on the Developer’s Kit depends on the network configuration.
The table below shows what kind of functionality the API’s support with a SUC ID Server (SIS) in the
Z-Wave network:

Table 7. Library functionality with a SIS

Slave Routing [Sensor |[Enhanced |[Portable |[Static Installer Bridge
Slave Slave Slave Controller |Controller [Controller |Controller

Network Management
Controller replication - - - - X X X X
Controller shift - - - - - - - -
Create new primary - - - - - - - -
controller
Request network updates - X X X X X X X
Request rediscovery of a - - - - X' X1 X1 X1
node
Remove failing nodes - - - - x1 x1 x1 X1
Replace failing nodes - - - - x1 x1 x1 X1
Set static ctrl. to SIS - - - - X? X? X2 X?
\Work as SIS - - - - - X - X
Work as inclusion X X X X
controller
“I'm lost* — cry for help - X X X X X X
“I'm lost*“ — provide help - x° x° X - X x° X
Provide routing table info - - - - X X X X

Note that the ability to provide help for “I'm lost” requests is limited to forwarding the request to the SIS.
Only the portable controller configured as SIS can actually do the updating of the device.

' Only when primary/inclusion controller
2 Only when primary controller

® Only if “always listening”

Zensys A/S Z-Wave Application Interfaces Page 52 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.1.1.4 Library Memory Usage

Each API library uses some of the 32KB flash and 2KB RAM available in the ZW0102/ZW0201. Refer to
the software release note [20] regarding the minimum amount of flash and RAM that is available for an
application build on the library in question. Using the debug functionality of the API will use up to 4K of
additional flash and 60 bytes of RAM.

In case an application doesn’t have enough flash memory available the following flash usage
optimization tips can be used:

Use BOOL instead of BYTE for TRUE/FALSE type variables.

Try to force the compiler to use registers for local BYTE variables in functions.

Avoid using floats because the entire floating point library is linked to the application.

Loops are often smallest if they can be done with a do while followed by a decrease of the counter

variable.

The Keil compiler does not always recognize duplicated code that is used in several different places,

so try to move the code to a function and call that instead.

Avoid having functions with many parameters, use globals instead.

Changing the order of parameters in a function definition will sometimes save code space because

the compiler optimization depends on the parameter order.

8. Be aware when using functions from the standard C libraries because the entire library is linked to
the application.

9. The dead code elimination in the Keil compiler doesn't always work, so remove all unused code

manually.

honp=

o

No

Zensys A/S Z-Wave Application Interfaces Page 53 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

5.2

Z-Wave Header Files

The C prototypes for the functions in the API's are defined in header files, grouped by functionality:

Protocol releated header
files

Description

Z\W_controller_api.h

Portable Controller interface. This header should be
used together with the Controller Library.

Macro defines.
Include all necessary header files.

ZW_controller_bridge_api.h

Bridge controller interface. This header should be
used together with the Controller bridge Library.

Macro defines.
Includes all necessary header files.

ZW__controller_installer_api.h

Installer interface. This header file should be used
together with the installer library.

Macro defines.
Includes all other necessary header files.

ZW_controller_static_api.h

Static Controller interface. This header should be used
together with the Static Controller Library.

Macro defines.
Includes all necessary header files.

ZW_slave_api.h

Slave interface.
Macro defines.
Includes all other necessary header files.

ZW_slave_routing_api.h

Routing slave node interface.
Macro definitions.
Includes all other necessary header files.

ZW _slave_32_api.h

Slave interface for ZMXXXX-RE Z-Wave module.
Macro defines.
Include all header files.

ZW_basis_api.h

Z-Wave < Application general software interface.
Interface to common Z-Wave functions.

ZW _transport_api.h

Transfer of data via Z-Wave protocol.

ZW_classcmd.h

Defines for device and command classes used to
obtain interoperability between Z-Wave enabled
products from different vendors, for a detailed
description refer to [1].

Zensys A/S

Z-Wave Application Interfaces

CONFIDENTIAL

Page 54 of 280

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

Various header files

Description

ZW010x.h

Synopsys DW8051 SFR and ISR defines for the Z-
Wave ZW010x RF transceiver.

ZW020x.h Inventra m8051w SFR and ISR defines for the Z-Wave
ZWO020x RF transceiver.
ZWO030x.h Inventra m8051w SFR and ISR defines for the Z-Wave

ZWO030x RF transceiver.

Z\W_adcdriv_api.h

ADC functionality.

Z\W_appltimer.h

PWM/Timer function

Z\W_debug_api.h

Debugging functionality via serial port.

ZW _eep_addr.h

Defines application EEPROM start address.

ZW_mem_api.h

EEPROM interface.

ZW_nodemask_api.h

Routines for manipulation of node ID lists organized as
bit masks.

ZW_non_zero.h

Define none zero area of the SRAM (ZW0201/ZW0301
only). See also section 4.1and 7.3

ZW _power_api.h

ASIC power management functionality.

CONFIDENTIAL

ZW_RF010x.h Flash ROM RF table offset for the Z-Wave ZW010x
ZW_RF020x.h Flash ROM RF table offset for the Z-Wave ZW020x
ZW_RF030x.h Flash ROM RF table offset for the Z-Wave ZW030x
Z\W_rtc_api.h Real Time Clock functionality (ZW0102 only).
ZW_SerialAPl.h Serial API interface with function ID defines etc.
Z\W_sysdefs.h CPU and clock defines.
ZW _timer_api.h Timer functionality.
ZW _triac_api.h TRIAC controller functionality.
Z\W_typedefs.h Common used defines (BYTE, WORD...).
ZW _uart_api.h UART functionality.

Zensys A/S Z-Wave Application Interfaces Page 55 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3 Z-Wave Common API

This section describes interface functions that are implemented within all Z-Wave nodes. The first
subsection defines functions that must be implemented within the application modules, while the second
subsection defines the functions that are implemented within the Z-Wave basis library.

Functions that do not complete the requested action before returning to the application (e.g.

ZW_SEND_DATA) have a callback function pointer as one of the entry parameters. Unless explicitly
specified this function pointer can be set to NULL (no action to take on completion).

5.3.1 Required Application Functions

The Z-Wave library requires the functions mentioned here implemented within the Application layer.

5.3.1.1 ApplicationlnitHW
|

ZW0102 version:
BYTE ApplicationlnitHW(void)
ApplicationInitHW should initialize application used hardware. The Z-Wave hardware initialization
function set all application 10 pins to input mode. The ApplicationIinitHW function is called by the
Z-Wave main function during system startup. At this point of time the Z-Wave timer system is not started
so waiting on hardware to get ready may be done by CPU busy loops.

Defined in: ZW _basis_api.h

Return value:

BYTE TRUE Application hardware initialized

FALSE Application hardware initialization failed.

Protocol enters test mode and Calls
ApplicationTestPoll

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 56 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

ZW0201 and ZW0301 version:
BYTE ApplicationIinitHW(BYTE bWakeupReason)
ApplicationInitHW should initialize application used hardware. The Z-Wave hardware initialization
function set all application IO pins to input mode. The ApplicationInitHW function is called by the
Z-Wave main function during system startup. At this point of time the Z-Wave timer system is not started
so waiting on hardware to get ready may be done by CPU busy loops.

Defined in: ZW basis_api.h

Return value:

BYTE TRUE Application hardware initialized

FALSE Application hardware initialization failed. Protocol
enters test mode and Calls ApplicationTestPoll

Parameters:

bWakeupReason IN Wakeup flags:
ZW_WAKEUP_RESET Woken up by reset or external interrupt
ZW_WAKEUP_WUT Woken up by the WUT timer
ZW_WAKEUP_SENSOR Woken up by a wakeup beam

Serial API (Not supported)

5.3.1.2 ApplicationlnitSw
|

BYTE ApplicationInitSW(void)

ApplicationInitSW should initialize application used memory and driver software. ApplicationInitSW is
called from the Z-Wave main function during system startup. At this point of time the Z-Wave timer
system is not started, therefore e.g. ZW_MEM_PUT functions cannot be used.

Defined in: Z\W_basis_api.h

Return value:

BYTE TRUE Application software initialized
FALSE Application software initialization failed.
(No Z-Wave basis action implemented
yet)

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 57 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

5.3.1.3 ApplicationTestPoll

void ApplicationTestPoll(void)

The ApplicationTestPoll function is the entry point from the Z-Wave basis software to the application

software when the production test mode is enabled in the protocol. This will happen when

ApplicationInitHW returns FALSE. The ApplicationTestPoll function will be called indefinitely until the
device is reset. The device must be reset and ApplicationlnitHW must return TRUE in order to exit this
mode. When ApplicationTestPoll is called the protocol will acknowledge frames sent to home ID 0 and

node ID as follows:

Device Node ID
Slave 0x00
Controllers before Dev. Kit v3.40 OxEF
Controllers from Dev. Kit v3.40 or later 0x01

The following API calls are only available in production test mode:

1. ZW_Eeprominit is used to initialize the external EEPROM. Remember to initialize controllers
with a unique home ID that typically can be transferred via the UART on the production line.

2. ZW_SendConst is used to validate RF communication. Remember to enable RF communication
when testing products based on a portable controller, routing slave or enhanced slave.

Defined in: ZW _basis_api.h

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces

CONFIDENTIAL

Page 58 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.1.4 ApplicationPoll
|

void ApplicationPoll(void)

The ApplicationPoll function is the entry point from the Z-Wave basis software to the application
software modules. The ApplicationPoll function is called from the Z-Wave main loop when no low-level
time critical actions are active. If the application software executes CPU time consuming functions,
without returning to the Z-Wave main loop, the ZW_POLL function must be called frequently (see
ZW_POLL).

To determine the ApplicationPoll frequency (see table below) is a LED Dimmer application modified to be
able to measure how often ApplicationPoll is called via an output pin. The minimum value is measured
when the module is idle, i.e. no RF communication, no push button activation etc. The maximum value is
measured when the ERTT application at the same time sends Basic Set Commands (value equal 0) as
fast as possible to the LED Dimmer (DUT).

Table 8. ApplicationPoll frequency
ZW0102 LED Dimmer | ZW0201 LED Dimmer | ZW0301 LED Dimmer

Minimum 58 us 7.2 us 7.2 us

Maximum 3.8 ms 2.4 ms 2.4 ms

Defined in: Z\W_basis_api.h

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 59 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

5.3.1.5 ApplicationCommandHandler
|

void ApplicationCommandHandler(BYTE rxStatus,

BYTE sourceNode,

ZW_APPLICATION_TX_BUFFER *pCmd,

BYTE cmdLength)

The Z-Wave protocol will call the ApplicationCommandHandler function when an application command
or request has been received from another node. The receive buffer is released when returning from this
function. The type of frame used by the request can be determined (single cast, mulitcast or broadcast
frame). This is used to avoid flooding the network by responding on a multicast or broadcast.

Defined in:
Parameters:

rxStatus IN

sourceNode IN
pCmd IN
cmdLength IN

Serial API:

Z\W_basis_api.h

Received frame status flags

RECEIVE_STATUS ROUTED_BUSY
XXXXXXX 1

RECEIVE_STATUS LOW_POWER
XXXXXXTX

RECEIVE_STATUS_TYPE_SINGLE
xxxx00xx

RECEIVE_STATUS_TYPE_BROAD
XxXxx01xx

RECEIVE_STATUS _TYPE_MULTI
xxxx10xx

RECEIVE_STATUS_FOREIGN_FRAME

Command sender Node ID
Payload from the received frame.

Number of Command class bytes.

Refer to ZW _transport_APIl.h header file

A response route is locked by the
application

Received at low output power level
Received a single cast frame
Received a broadcast frame

Received a multicast frame

The received frame is not addressed to
this node (Only valid in promiscuous
mode)

The command class is the very first byte.

ZW->HOST: REQ | 0x04 | rxStatus | sourceNode | cmdLength | pCmd[]

Zensys A/S

Z-Wave Application Interfaces

Page 60 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.1.6 ApplicationNodelnformation
|

void ApplicationNodelnformation(BYTE *deviceOptionsMask,
APPL_NODE_TYPE *nodeType,
BYTE **nodeParm,
BYTE *parmLength)

The Z-Wave application layer use ApplicationNodelnformation to generate the Node Information frame
and to save information about node capabilities. All the Z-Wave application related fields of the Node
Information structure must be initialized in this function. The Generic Device Class, Specific Device
Class, and Command Classes are described in [1].The deviceOptionsMask is a Bit mask where Listening
and Optional functionality flags must be set or cleared accordingly to the nodes capabilities.

The listening option in the deviceOptionsMask (APPLICATION_NODEINFO_LISTENING) should only be
set if the node is powered continuously and reside on a fixed position in the installation. This is because
always listening nodes are included in the routing table to assist as repeaters in the network. The routing
table is static during normal operation and this is the reason always listening nodes should not be moved
around in the network.

In case the Listening bit is cleared (APPLICATION_NODEINFO_NOT_LISTENING) the node should be
non-listening. This option will typically be selected for battery operated nodes that are power off RF
reception when idle (prolongs battery lifetime). Even though a node is battery operated it should NOT
normally be moved around in the network. The only exception is the Controller library which is targeted
specifically to node types that move around in the network, such as a portable remote.

The Optional Functionality bit (APPLICATION_NODEINFO_OPTIONAL_FUNCTIONALITY) is used to
indicate that this node supports other command classes than the mandatory classes for the selected
generic and specific device class.

Examples:
To set a device as Listening with Optional Functionality:

*deviceOptionsMask = APPLICATION_NODEINFO_LISTENING |
APPLICATION_NODEINFO_OPTIONAL_FUNCTIONALITY;

To set a device as not listening and with no Optional functionality support:
*deviceOptionsMask = APPLICATION_NODEINFO_NOT_LISTENING;

Note for Controllers: Because controller libraries store some basic information about themselves from
ApplicationNodelnformation in nonvolatile memory. ApplicationNodelnformation should be set to the
correct values before Application return from ApplicationInitHW(), for applications where this cannot be
done. The Application must call ZW_SET_DEFAULT() after updating ApplicationNodelnformation in
order to force the Z-Wave library to store the correct values.

A way to verify if ApplicationNodelnformation is stored by the protocol is to call
ZW_GetNodeProtocolinfo to verify that Generic and specific nodetype are correct. If they differ from
what is expected, the Application should Set the ApplicationNodelnformation to the correct values and
call ZW_SET_DEFAULT() to force the protocol to update its information.

Zensys A/S Z-Wave Application Interfaces Page 61 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Defined in: ZW _basis_api.h

Parameters:
deviceOptionsMask Bitmask with options
ouT
APPLICATION_NODEINFO_LISTENING In case this node is always
listening (typically AC powered
nodes) and stationary.
APPLICATION_NODEINFO_NOT_LISTENING In case this node is non-
listening (typically battery
powered nodes).
APPLICATION_NODEINFO _ If the node supports other
command classes than the
OPTIONAL_FUNCTIONALITY ones mandatory for this nodes
Generic and Specific Device
Class
nodeType OUT Pointer to structure with the Device Class:
(*nodeType).generic The Generic Device Class [1].
Do not enter zero in this field.
(*nodeType).specific The Specific Device Class [1].
nodeParm OUT Command Class buffer pointer. Command Classes [1]

supported by the device itself
and optional Command
Classes the device can control
in other devices.

parmLength OUT Number of Command Class bytes.
Serial API:

The ApplicationNodelnformation is replaced by SerialAPI_ApplicationNodelnformation. Used to
set information that will be used in subsequent calls to ZW_SendNodelnformation. Replaces the
functionality provided by the ApplicationNodelnformation() callback function.

void SerialAPl_ApplicationNodelnformation(BYTE deviceOptionsMask,
APPL_NODE_TYPE *nodeType,
BYTE *nodeParm,
BYTE parmLength)

The define APPL_NODEPARM_MAX in serialappl.h must be modified accordingly to the number of
command classes to be notified.

HOST->ZW: REQ | 0x03 | deviceOptionsMask | generic | specific | parmLength | nodeParm[]

Zensys A/S Z-Wave Application Interfaces Page 62 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

The figure below lists the Node Information Frame format. The frame is created by the Z-Wave Protocol
using ApplicationNodelnformation.

Byte descriptor \ bit number 7 6 5 4 3 2 1 0

Capability rI;:rs1tge Z-Wave Protocol Specific Part

Security Opt. Z-Wave Protocol Specific Part

Func.
Reserved Z-Wave Protocol Specific Part
Basic Basic Device Class (Z-Wave Protocol Specific Part)

Generic Generic Device Class

Specific Specific Device Class
Nodelnfo[0] Command Class 1

Nodelnfo[n-1]

Command Class n

Figure 7 Node Information frame format

Zensys A/S

Z-Wave Application Interfaces

Page 63 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.1.7 ApplicationSlaveUpdate (All slave libraries)
|

void ApplicationSlaveUpdate (BYTE bStatus,
BYTE bNodelD,
BYTE *pCmd,
BYTE bLen)

The Z-Wave protocol also calls ApplicationSlaveUpdate when a node information frame has been
received and the protocol is not in a state where it needs the node information.

All slave libraries requires this function implemented within the Application layer.
Defined in: ZW _slave_api.h
Parameters:
bStatus IN The status, value could be one of the following:
UPDATE_STATE_NODE_INFO_RECEIVED A node has sent its node info but the
protocol are not in a state where it is

needed

bNodelD IN The updated node’s node ID (1..232).

pCmd IN Pointer of the updated node’s node info.
bLen IN The length of the pCmd parameter.
Serial API:

ZW->HOST: REQ | 0x49 | bStatus | bNodelD | bLen | basic | generic | specific | commandclasses|]

Zensys A/S Z-Wave Application Interfaces Page 64 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.1.8 ApplicationControllerUpdate (All controller libraries)
|

void ApplicationControllerUpdate (BYTE bStatus,
BYTE bNodelD,
BYTE *pCmd,
BYTE bLen)

The Z-Wave protocol in a controller calls ApplicationControllerUpdate when a new node has been
added or deleted from the controller through the network management features. The Z-Wave protocol
calls ApplicationControllerUpdate as a result of using the API call ZW_RequestNodelnfo. The
application can use this functionality to add/delete the node information from any structures used in the
Application layer. The Z-Wave protocol also calls ApplicationControllerUpdate when a node
information frame has been received and the protocol is not in a state where it needs the node
information.

ApplicationControllerUpdate is called on the SUC each time a node is added/deleted by the primary
controller. ApplicationControllerUpdate is called on the SIS each time a node is added/deleted by the
inclusion controller. When a node request ZW_RequestNetWorkUpdate from the SUC/SIS then the
ApplicationControllerUpdate is called for each node change (add/delete) on the requesting node.
ApplicationControllerUpdate is not called on a primary or inclusion controller when a node is
added/deleted.

All controller libraries requires this function implemented within the Application layer.

Defined in: ZW_controller_api.h
Parameters:
bStatus IN The status of the update process, value could

be one of the following:

UPDATE_STATE_ADD_DONE A new node has been added to the
controller and the network

UPDATE_STATE_DELETE DONE A node has been deleted from the
controller and the network

UPDATE_STATE_NODE_INFO_RECEIVED A node has sent its node info either
unsolicited or as a response to a
ZW_RequestNodelnfo call

UPDATE_STATE_SUC_ID The SUC node Id was updated

bNodelD IN The updated node’s node ID (1..232).

pCmd IN Pointer of the updated node’s node info.
bLen IN The length of the pCmd parameter.
Serial API:

ZW->HOST: REQ | 0x49 | bStatus | bNodelD | bLen | basic | generic | specific | commandclasses]]

ApplicationControllerUpdate via the Serial API also have the possibility for receiving the status
UPDATE_STATE_NODE_INFO_REQ_FAILED, which means that a node did not acknowledge a

Zensys A/S Z-Wave Application Interfaces Page 65 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

ZW_RequestNodelnfo call.

5.3.1.9 ApplicationSlaveCommandHandler (Bridge Controller library only)

void ApplicationSlaveCommandHandler(BYTE rxStatus,
BYTE destNode,
BYTE sourceNode,
ZW_APPLICATION_TX_BUFFER *pCmd,
BYTE cmdLength)

The Z-Wave protocol will call the ApplicationSlaveCommandHandler function when an application
command or request has been received from another node to an existing virtual slave node. The receive
buffer is released when returning from this function.

The Z-Wave Bridge Controller library requires this function implemented within the Application layer.

Defined in: Z\W_controller_bridge_api.h

Parameters:
rxStatus IN Frame header info:
RECEIVE_STATUS LOW_POWER Received at low output
power level.
RECEIVE_STATUS ROUTED_BUSY A response route is
locked by the application.
destNode IN Command receiving virtual slave Node ID.
sourceNode IN Command sender Node ID.
pCmd IN Payload from the received frame. The command
class is the very first byte.
cmdLength IN Number of Command class bytes.
Serial API:

ZW->HOST: REQ | 0xA1 | rxStatus | destNode | sourceNode | cmdLength | pCmd[]

Zensys A/S Z-Wave Application Interfaces Page 66 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.1.10 ApplicationSlaveNodelnformation (Bridge Controller library only)

void ApplicationSlaveNodelnformation(BYTE destNode,
BYTE *listening,
APPL_NODE_TYPE *nodeType,
BYTE *nodeParm,
BYTE *parmLength)

Request Application Virtual Slave Node information. The Z-Wave protocol layer calls
ApplicationSlaveNodelnformation just before transmitting a "Node Information" frame.

The Z-Wave Bridge Controller library requires this function implemented within the Application layer.

Defined in: ZW _controller_bridge_api.h

Parameters:
destNode IN Which Virtual Node do we want the node
information from.
listening OUT TRUE if this node is always listening and
not moving.
nodeType OUT Pointer to structure with the Device Class:
(*nodeType).generic The Generic Device Class [1].
Do not enter zero in this field.
(*nodeType).specific The Specific Device Class [1].
nodeParm OUT Command Class buffer pointer. Command Classes [1]
supported by the device itself
and optional Command
Classes the device can control
in other devices.
parmLength OUT Number of Command Class bytes.
Serial API:

The ApplicationSlaveNodelnformation is replaced by
SerialAPI_ApplicationSlaveNodelnformation. Used to set node information for the Virtual Slave
Node in the embedded module this node information will then be used in subsequent calls to
ZW_SendSlaveNodelnformation. Replaces the functionality provided by the
ApplicationSlaveNodelnformation() callback function.

void SerialAPl_ApplicationSlaveNodelnformation(BYTE destNode,
BYTE listening,
APPL_NODE_TYPE * nodeType,
BYTE *nodeParm,
BYTE parmLength)

HOST->ZW: REQ | 0xAO | destNode | listening | genericType | specificType | parmLength | nodeParm[
]

Zensys A/S Z-Wave Application Interfaces Page 67 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.1.11 ApplicationRfNotify (ZW0301 only)
|

void ApplicationRfNotify (BYTE rfState)

This function is used to inform the application about the current state of the radio enabling control of an
external power amplifier (PA). The Z-Wave protocol will call the ApplicationRfNotify function when the
radio changes state as follows:

e From Tx to Rx

e FromRxto Tx

e From powere down to Rx

e From power down to Tx

e When PA is powered up

e When PA is powered down

This enables the application to control an external PA using the appropriate number of I/O pins. It takes
approximately 250 us to shift from Tx->Rx or Rx->Tx, so the settling time of the PA hardware must be
faster.

When using an external PA, remember to set the field at FLASH_APPL_PLL_STEPUP_OFFS in
App_RFSetup.a51 to 0 (zero) for adjustment of the signal quality.

This is necessary to be able to pass a FCC compliance test.

Defined in: ZW basis_api.h

Parameters:
rfState IN The current state of the radio. Refer to ZW_transport_API.h header file
ZW_RF_TX_MODE The radio is in Tx state. Previous state is
either Rx or power down
ZW_RF_RX_MODE The radio in Rx or power down state.
Previous state is ether Tx or power down
ZW_RF_PA ON The radio in Tx moode and the PA is
powered on
ZW_RF_PA OFF The radio in Tx mode and the PA is
powered off
Serial API:

Not implemented

Zensys A/S Z-Wave Application Interfaces Page 68 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.2 Z-Wave Basis API

This section defines functions that are implemented in all Z-Wave nodes.

5.3.2.1 ZW_Poll
__|

void ZW_Poll(void)

Macro: ZW_POLL

This Z-Wave low-level poll function handles the transfer of bytes from the RF input, and transfer of bytes
to the RF output media. This function must therefore be called while waiting on HW ready states and
when executing other time consuming functions.

In order not to disrupt the radio communication and the protocol no application function must execute
code for more than 10ms without returning or calling the ZW_Poll function. Interrupt must not be disabled
more than 8 bit receive time, which is around 0.8 ms.

Defined in: Z\W_basis_api.h

Serial API (Not supported)

5.3.2.2 ZW_Random
|

BYTE ZW_Random(void)
Macro: ZW_RANDOM()
A pseudo-random number generator that generates a sequence of numbers, the elements of which are
approximately independent of each other. The same sequence of pseudo-random numbers will be
repeated in case the module is power cycled. The Z-Wave protocol uses also this function in the random
backoff algorithm etc.

Defined in: ZW basis_api.h

Return value:

BYTE Random number (0 — OxFF)

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 69 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.2.3 ZW_RFPowerLevelSet
|

BYTE ZW_RFPowerLevelSet(BYTE powerLevel)
Macro: ZW_RF_POWERLEVEL_SET(POWERLEVEL)

Set the power level used in RF transmitting. The actual RF power is dependent on the settings for
transmit power level in App_RFSetup.a51. If this value is changed from using the default library value the
resulting power levels might differ from the intended values. The returned value is however always the
actual one used.

NOTE: This function should only be used in an install/test link situation and the power level
should always be set back to normalPower when the testing is done.

Defined in: ZW basis_api.h
Parameters:

powerLevel IN Powerlevel to use in RF transmission,
valid values:

normalPower Max power possible

minus1dB Normal power - 1dB
On the ZW0201 will this value be
mapped into the next even value e.g.
minus2dB

minus2dB Normal power - 2dB

minus3dB Normal power - 3dB
On the ZW0201 will this value be
mapped into the next even value e.g.
minus4dB

minus4dB Normal power - 4dB

minus5dB Normal power - 5dB
On the ZW0201 will this value be
mapped into the next even value e.g.
minus6dB

minus6dB Normal power - 6dB

minus7dB Normal power - 7dB
On the ZW0201 will this value be
mapped into the next even value e.g.
minus8dB

minus8dB Normal power - 8dB

minus9dB Normal power - 9dB
On the ZW0201 will this value be
mapped into the next even value e.g.
minus10dB

Zensys A/S Z-Wave Application Interfaces Page 70 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Return value:

BYTE The powerlevel set.
Serial API (Serial API protocol version 4):
HOST->ZW: REQ | 0x17 | powerLevel

ZW->HOST: RES | 0x17 | retVal

5.3.24 ZW_RFPowerlLevelGet
|

BYTE ZW_RFPowerLevelGet(void)

Macro: ZW_RF_POWERLEVEL_GET()

Get the current power level used in RF transmitting.

NOTE: This function should only be used in an install/test link situation.
Defined in: Z\W_basis_api.h
Return value:

BYTE The power level currently in effect during
RF transmissions.

Serial API
HOST->ZW: REQ | OxBA

ZW->HOST: RES | OxBA | powerlevel

Zensys A/S Z-Wave Application Interfaces Page 71 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.25 ZW_RediscoveryNeeded (Not Slave and Bridge Controller Library)
|

BYTE ZW_RediscoveryNeeded (BYTE bNodelD,
VOID_CALLBACKFUNC (completedFunc)(BYTE txStatus))

Macro: ZW_REDISCOVERY_NEEDED(nodeid, func)

This function can be used to request a controller to update the nodes neighbors. The function will try to
request a neighbor rediscovery from a controller in the network. In order to reach a controller it uses
other nodes (bNodelD) in the network. It is left to the application to decide the algorithm that should be
used for trying different bNodelD’s.

If bNodelD supports this functionality (routing slave, enhanced slave and controller libraries), bNodelD
will try to contact a controller on behalf of the node that requests the rediscovery. If the functionality is
unsupported by bNodelD ZW_ROUTE_LOST_FAILED will be returned in the callback function and the
next node can be tried.

The callback function is called when the request have been processed by the protocol. If
ZW_ROUTE_UPDATE_DONE is returned bNodelD was able to contact a controller and the routing
information have been updated.

If ZW_ROUTE_LOST_FAILED is returned the bNodelD was unable to help and the application can try
next node if it decides so.

Defined in: ZW_controller_static_api.h and ZW_slave_routing_api.h
Return value:
FALSE The node is busy doing another update.

TRUE The help process is started; status will
come in the callback.

Parameters:
bNodelD IN Node ID (1..232) to request help from

completedFunc Transmit completed call back function
IN

Zensys A/S Z-Wave Application Interfaces Page 72 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Callback function parameters:
ZW_ROUTE_LOST_ACCEPT The node bNodelD was able to contact a
controller, which then will initiate the re-
discovery of the lost node.

ZW_ROUTE_LOST_FAILED The node bNodelD could not help, try
another node

ZW_ROUTE_UPDATE_ABORT The node bNodelD do not respond, try
another node

ZW_ROUTE_UPDATE_DONE The rediscovery ended successfully.

Serial API (not supported)

5.3.2.6 ZW_RequestNetWorkUpdate (Not Slave Library)
|

BYTE ZW_RequestNetWorkUpdate (VOID_CALLBACKFUNC (completedFunc)(BYTE txStatus))
Macro: ZW_REQUEST_NETWORK_UPDATE (func)

Used to request network topology updates from the SUC/SIS node. The update is done on protocol level
and any changes are notified to the application by calling the ApplicationControllerUpdate).

Secondary controllers can only use this call when a SUC is present in the network. All controllers can
use this call in case a SUC ID Server (SIS) is available.

NOTE: The SUC can only handle one network update at a time, so care should be taken not to have all
the controllers in the network ask for updates at the same time.

WARNING: This API call will generate a lot of network activity that will use bandwidth and stress the
SUC in the network. Therefore network updates should be requested as seldom as possible and never
more often that once every hour from a controller.

Defined in: Z\W_controller_api.h and ZW_slave_routing_api.h

Return value:

BYTE TRUE If the updating process is started.

FALSE If the requesting controller is the SUC
node or the SUC node is unknown.

Parameters:

completedFunc Transmit complete call back.
IN

Zensys A/S Z-Wave Application Interfaces Page 73 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Callback function Parameters:
txStatus IN Status of command:
ZW_SUC_UPDATE_DONE

ZW_SUC_UPDATE_ABORT

ZW_SUC_UPDATE_WAIT
ZW_SUC_UPDATE_DISABLED

ZW_SUC_UPDATE_OVERFLOW

Serial API:
HOST->ZW: REQ | 0x53 | funclD
ZW->HOST: RES | 0x53 | retVal

ZW->HOST: REQ | 0x53 | funcID | txStatus

The update process succeeded.

The update process aborted because of
an error.

The SUC node is busy.
The SUC functionality is disabled.

The controller requested an update after
more than 64 changes have occurred in
the network. The update information is
then out of date in respect to that
controller. In this situation the controller
have to make a replication before trying
to request any new network updates.

Zensys A/S Z-Wave Application Interfaces

CONFIDENTIAL

Page 74 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.2.7 ZW_RFPowerlevelRediscoverySet
|

void ZW_RFPowerlevelRediscoverySet(BYTE bNewPower)
Macro: ZW_RF_POWERLEVEL_REDISCOVERY_SET(bNewPower)

Set the reduced power level locally when finding neighbors. The protocol is automatically initialized with
the default power levels used when finding neighbors as before this API call was introduced. The default
power levels are -1dB for the 100 Series and -2dB for the 200 Series. It is only necessary to call
ZW_RFPowerlevelRediscoverySet in case a value different from the default power levels is needed.
Furthermore is it only necessary to set a new reduced power level once then the new level will be used
every time a neighbour discovery is performed. The API call can be called from Applicationlnit or during
runtime from ApplicationPoll or ApplicationCommandHandler.

NOTE: Be aware of that weak RF links can be included in the routing table in case the reduce
power level is set to 0dB (normalPower). Weak RF links can increase latency in the network due
to retries to get through. Finally will a large reduction in power level result in a reduced range
between the nodes in the network resulting in an increased latency due to an increase in the
necessary hops to reach the destination.

Defined in: ZW _basis_api.h
Parameters:

bNewPower IN Powerlevel to use when doing neighbor
discovery, valid values:

normalPower Max. power possible
minus1dB Normal power - 1dB

On the ZW0201 will this value be
mapped into the next even value e.g.

minus2dB
minus2dB Normal power - 2dB
minus3dB Normal power - 3dB

On the ZW0201 will this value be
mapped into the next even value e.g.

minus4dB
minus4dB Normal power - 4dB
minus5dB Normal power - 5dB

On the ZW0201 will this value be
mapped into the next even value e.g.

minus6dB
minus6dB Normal power - 6dB
minus7dB Normal power - 7dB

On the ZW0201 will this value be
mapped into the next even value e.g.
minus8dB

Zensys A/S Z-Wave Application Interfaces Page 75 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

minus8dB Normal power - 8dB

minus9dB Normal power - 9dB
On the ZW0201 will this value be
mapped into the next even value e.g.
minus10dB

Serial API (Not supported)

5.3.2.8 ZW_SetPromiscuousMode (Not Bridge Controller library)
|

void ZW_SetPromiscuousMode(BOOL state)
Macro: ZW_SET_PROMISCUOUS_MODE(state)

ZW_SetPromiscuousMode Enable / disable the promiscuous mode.
When promiscuous mode is enabled, all application layer frames will be passed to the application layer
regardless if the frames are addressed to another node. When promiscuous mode is disabled, only the

frames addressed to the node will be passed to the application layer.

Defined in: ZW _basis_api.h

Parameters:

state IN TRUE to enable the promiscuous mode,
FALSE to disable it.

Serial API:

HOST->ZW: REQ | 0xDO | state

Zensys A/S Z-Wave Application Interfaces Page 76 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.29 ZW_SetRFReceiveMode

BYTE ZW_SetRFReceiveMode(BYTE mode)

Macro: ZW_SET_RX_MODE(mode)

ZW_SetRFReceiveMode is used to power down the RF when not in use e.g. expects nothing to be
received. ZW_SetRFReceiveMode can also be used to set the RF into receive mode. This functionality
is useful in battery powered Z-Wave nodes e.g. the Z-Wave Remote Controller. The RF is automatic

powered up when transmitting data.

Defined in:

Return value:

BYTE

Parameters:

mode IN

Serial API

ZW_basis_api.h

TRUE

FALSE

TRUE

FALSE

HOST->ZW: REQ | 0x10 | mode

ZW->HOST: RES | 0x10 | retVal

If operation was successful

If operation was none successful

On: Set the RF in receive mode and
starts the receive data sampling

Off: Set the RF in power down mode (for
battery power save).

Zensys A/S

Z-Wave Application Interfaces Page 77 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.2.10 ZW_SetSleepMode
|

ZW0102 version:

void ZW_SetSleepMode(void)

Macro: ZW_SLEEP()

Set the CPU in sleep mode until woken by an interrupt. This function is used by battery operated devices
in order to save power when idle. The CPU will first enter sleep mode when all internal protocol tasks is
finished. The RF transceiver is turned off so nothing can be received while in sleep mode. RF transceiver
will not be turned off for a device configured as listening. The ADC is not disabled during sleep mode.
The Z-Wave main poll loop is stopped until the CPU is awake again. Any interrupt will wake up the CPU
from sleep mode.

Any external hardware controlled by the application should be turned off before returning from the
application poll function.

Be aware of the additional power consumption in case the internal power on reset (POR) circuit is
enabled.

Defined in: ZW _basis_api.h
Serial API
HOST->ZW: REQ | 0x11 | mode | intEnable

The parameters mode and intEnable are ignored by the 100 Series but are added to enable support of
the 200 Series.

Zensys A/S Z-Wave Application Interfaces Page 78 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

ZW0201 and ZW0301 version:
void ZW_SetSleepMode(BYTE mode, BYTE intEnable)
Macro: ZW_SET_SLEEP_MODE(MODE,MASK_INT)

Set the CPU in a specified power down mode. Battery-operated devices use this function in order to save
power when idle. The CPU will first enter power down mode when all internal protocol tasks are finished.
The RF transceiver is turned off so nothing can be received while in WUT or STOP mode. The ADC is
also disabled when in STOP or WUT mode. The Z-Wave main poll loop is stopped until the CPU is
awake again. Refer to the mode parameter description regarding how the CPU can be wakened up from
sleep mode. In STOP and WUT modes can the interrupt(s) be masked out so they cannot wake up the
ASIC.

Any external hardware controlled by the application should be turned off before returning from the
application poll function.

Be aware of the additional power consumption in case the internal power on reset (POR) circuit is
enabled.

For more information on the best way to use this API call see section 5.3.9.

The Z-Wave main poll loop is stopped until the CPU is wakened.

Zensys A/S Z-Wave Application Interfaces Page 79 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Defined in: ZW_power_api.h
Parameters:
mode IN Specify the type of power save mode:

ZW_STOP_MODE The whole ASIC is turned down. The
ASIC can be wakened up again by
Hardware reset or by the external
interrupt INT1.

ZW_WUT_MODE The ASIC is powered down, and it can
only be waked by the timer timeout or by
the external interrupt INT1. The time out
value of the WUT can be set by the API
call ZW_SetWutTimeout. When the
ASIC is waked from the WUT_MODE,
the API call ZW_IsWutFired can be used
to test if the ASIC is waked up by timeout
or INT1. The ASIC wake up from WUT
mode from the reset state. The timer
resolution in this mode is one second.
The maximum timeout value is 256 secs.

ZW_WUT_FAST_MODE This mode has the same functionality as
ZW_WUT_MODE, except that the timer
resolution is 1/128 sec. The maximum
timeout value is 2 secs. This mode is only
available in ZW0301.

intEnable IN Interrupt enable bit mask. If a bit mask is
1, the corresponding interrupt is enabled
and this interrupt will wakeup the ASIC
from power down. Valid bit masks are:

ZW_INT_MASK_EXT1 External interrupt 1 (PIN P1_7) is
enabled as interrupt source

0x00 No external Interrupts will wakeup.
Usefull in WUT mode
Serial API

HOST->ZW: REQ | 0x11 | mode | intEnable

Zensys A/S Z-Wave Application Interfaces Page 80 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.2.11 ZW_SendNodelnformation
|

BYTE ZW_SendNodelnformation(BYTE destNode,
BYTE txOptions,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))

Macro: ZW_SEND_NODE_INFO(node,option,func)

Create and transmit a “Node Information” frame. The Z-Wave transport layer builds a frame, request
application node information (see ApplicationNodelnformation) and queue the “Node Information”
frame for transmission. The completed call back function (completedFunc) is called when the
transmission is complete.

The Node Information frame is a protocol frame and will therefore not be directly available to the
application on the receiver. The API call ZW_SetlLearnMode() can be used to instruct the protocol to
pass the Node information frame to the application.

NOTE: ZW_SendNodelnformation uses the transmit queue in the API, so using other transmit functions
before the complete callback has been called by the API might fail.

Defined in: ZW _basis_api.h

Return value:

BYTE TRUE If frame was put in the transmit queue
FALSE If it was not (callback will not be called)

Parameters:

destNode IN Destination Node ID

(NODE_BROADCAST == all nodes)

txOptions IN Transmit option flags.
(see ZW_SendData)

completedFunc Transmit completed call back function
IN

Callback function Parameters:

txStatus IN (see ZW_SendData)

Serial API:

HOST->ZW: REQ | 0x12 | destNode | txOptions | funcID

ZW->HOST: REQ | 0x12 | funclID | txStatus

Zensys A/S Z-Wave Application Interfaces Page 81 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.2.12 ZW_SendTestFrame
|

BYTE ZW_SendTestFrame(BYTE nodelD,

BYTE powerlevel,
VOID_CALLBACKFUNC(func)(BYTE txStatus))

Macro: ZW_SEND_TEST_FRAME(nodelD, power, func)
Send a test frame directly to nodelD without any routing, RF transmission power is previously set to
powerlevel by calling ZW_RF_POWERLEVEL_SET. The test frame is acknowledged at the RF
transmission powerlevel indicated by the parameter powerlevel by nodelD (if the test frame got through).
This test will be done using 9600 kbit/s transmission rate.
NOTE: This function should only be used in an install/test link situation.

Defined in: Z\W_basis_api.h

Parameters:

nodelD IN Node ID on the node ID (1..232) the test
frame should be transmitted to.

powerLevel IN Powerlevel to use in RF transmission,

valid values:

normalPower Max power possible

minus1dB Normal power - 1dB
On the ZW0201 will this value be
mapped into the next even value e.g.
minus2dB

minus2dB Normal power - 2dB

minus3dB Normal power - 3dB
On the ZW0201 will this value be
mapped into the next even value e.g.
minus4dB

minus4dB Normal power - 4dB

minus5dB Normal power - 5dB
On the ZW0201 will this value be
mapped into the next even value e.g.
minus6dB

minus6dB Normal power - 6dB

minus7dB Normal power - 7dB
On the ZW0201 will this value be
mapped into the next even value e.g.
minus8dB

minus8dB Normal power - 8dB

Zensys A/S Z-Wave Application Interfaces Page 82 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

minus9dB Normal power - 9dB
On the ZW0201 will this value be
mapped into the next even value e.g.

minus10dB
func IN Call back function called when done.
Callback function Parameters:
txStatus IN (see ZW_SendData)
Return value:
BYTE FALSE If transmit queue overflow.
Serial API
HOST->ZW: REQ | OxBE | nodelD| powerlevel | funclD
ZW->HOST: REQ | OXBE | retVal
ZW->HOST: REQ | OxBE | funcID | txStatus
Zensys A/S Z-Wave Application Interfaces Page 83 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.2.13 ZW_Type_Library
|

BYTE ZW_Type_Library(void)

Macro: ZW_TYPE_LIBRARY()

Get the Z-Wave library type.
Defined in: ZW basis_api.h

Return value:

BYTE Returns the library type as one of the
following:
ZW_LIB_CONTROLLER_STATIC Static controller library
ZW _LIB_CONTROLLER_BRIDGE Bridge controller library
ZW_LIB_CONTROLLER Portable controller library
ZW_LIB_SLAVE_ENHANCED Enhanced slave library
ZW_LIB_SLAVE_ROUTING Routing slave library
ZW_LIB_SLAVE Slave library
ZW_LIB_INSTALLER Installer library

Serial API

HOST->ZW: REQ | 0xBD

ZW->HOST: RES | 0xBD | retVal

Zensys A/S Z-Wave Application Interfaces Page 84 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

5.3.2.14 ZW _Version
|

BYTE ZW_Version(BYTE *buffer)

Macro: ZW_VERSION(buffer)

Get the Z-Wave basis API library version.

Defined in:

Parameters:

buffer OUT

Return value:

BYTE

Serial API:

ZW_basis_api.h

Returns the API library version in text
using the format:

Z-Wave x.yy

where x.yy is the library version.

Returns the library type as one of the

following:

ZW_LIB_CONTROLLER_STATIC Static controller library
ZW_LIB_CONTROLLER_BRIDGE Bridge controller library
ZW LIB_CONTROLLER Portable controller library
ZW _LIB_SLAVE_ENHANCED Enhanced slave library
ZW _LIB_SLAVE_ROUTING Routing slave library
ZW_LIB_SLAVE Slave library

ZW _LIB_INSTALLER Installer library

HOST->ZW: REQ | 0x15

ZW->HOST: RES | 0x15 | buffer (12 bytes) | library type

Zensys A/S

Z-Wave Application Interfaces

CONFIDENTIAL

Page 85 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

An additional call is offered capable of returning Serial API version number, Serial AP| capabilities, nodes
currently stored in the EEPROM (only controllers) and chip used.

HOST->ZW: REQ | 0x02

(Controller) ZW->HOST: RES | 0x02 | ver | capabilities | 29 | nodes[29] | chip_type | chip_version
(Slave) ZW->HOST: RES | 0x02 | ver | capabilities | 0 | chip_type | chip_version

Nodes[29] is a node bitmask.

Capabilities flag:

Bit 0: 0 = Controller API; 1 = Slave API

Bit 1: 0 = Timer functions not supported; 1 = Timer functions supported.

Bit 2: 0 = Primary Controller; 1 = Secondary Controller

Bit 3-7: reserved

The chip used can be determined as follows:

Z-Wave Chip | Chip_type | Chip_version

ZW0102 0x01 0x02
ZW0201 0x02 0x01
ZW0301 0x03 0x01

Timer functions are: TimerStart, TimerRestart and TimerCancel.

5.3.2.15 ZW_VERSION_MAJOR / ZW_VERSION_MINOR / ZW_VERSION_BETA
__|

Macro: ZW_VERSION_MAJOR/ZW_VERSION_MINOR/ ZW_VERSION_BETA

These #defines can be used to get a decimal value of the used Z-Wave library. ZW_VERSION_MINOR
should be 0 padded when displayed to users EG: ZW_VERSION_MAJOR =1 ZW_VERSION_MINOR
=2 should be shown as: 1.02 to the user where as ZW_VERSION_MAJOR =1 ZW_VERSION_MINOR
=20 should be shown as 1.20.

ZW_VERSION_BETA is only defined for beta releases of the Z-Wave Library. In which case it is defined
as a single char for instance: 'b'

Defined in: Z\W_basis_api.h

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 86 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.2.16 ZW_GetProtocolStatus
|

BYTE ZW_GetProtocolStatus(void)

Macro: ZW_GET_PROTOCOL_STATUS()

Report the status of the protocol.

The function return a mask telling which protocol function is currently running
Defined in: ZW _basis_api.h
Return value:

BYTE Returns the protocol status as one of the
following:

Zero Protocol is idle.
ZW_PROTOCOL_STATUS_ROUTING Protocol is analyzing the routing table.
ZW_PROTOCOL_STATUS_SUC SUC sends pending updates.

Serial API

HOST->ZW: REQ | OxBF

ZW->HOST: RES | OxBF | retVal

Zensys A/S Z-Wave Application Interfaces Page 87 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.2.17 ZW_WatchDogEnable
|

void ZW_WatchDogEnable(void)
Macro: ZW_WATCHDOG_ENABLE()

Enables the ASIC’s built in watchdog. By default, the watchdog is enabled.
The watchdog timeout interval depends on the hardware platform.

Z-Wave Chip | Watchdog interval

ZW0102 0.56 s
ZW0201 1.05s
ZW0301 1.05s

The watchdog must be kicked at least one time per interval. Failing to do so will cause the ASIC to be
reset.
To avoid unintentional reset of the application during initialization, the watchdog may be kicked one or
more times in the function ApplicationInitSW.
Some software bugs can be difficult to diagnose when the watchdog is enabled because the application
will reboot when the watchdog resets the asic. Therefore it is recommended to also test the device with
the watchdog disabled.

Defined in: ZW _basis_api.h

Serial API

HOST->ZW: REQ | 0xB6

5.3.2.18 ZW_WatchDogDisable
|

void ZW_WatchDogDisable(void)

Macro: ZW_WATCHDOG_DISABLE ()

Disable the ASIC’s built in watchdog.
Defined in: ZW basis_api.h
Serial API

HOST->ZW: REQ | 0xB7

Zensys A/S Z-Wave Application Interfaces Page 88 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.2.19 ZW_WatchDogKick
|

void ZW_WatchDogKick(void)
Macro: ZW_WATCHDOG_KICK ()
To keep the watchdog timer from resetting the ASIC, you've got to kick it regularly. The
ZW_WatchDogKick API call must be called in the function ApplicationPoll to assure correct detection of
any software anomalies etc.

Defined in: ZW _basis_api.h

Serial API

HOST->ZW: REQ | 0xB8

Zensys A/S Z-Wave Application Interfaces Page 89 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.2.20 ZW_SetExtIntLevel (ZW0201/ZW0301 only)
|

void ZW_SetExtIntLevel(BYTE intSrc, BOOL triggerLevel)

Macro: ZW_SET_EXT_INT_LEVEL(SRC, TRIGGER_LEVEL)

Set the trigger level for external interrupt O or 1. Level or edge triggered is selected as follows:

Level Triggered | Edge Triggered
External interrupt 0 ITO=0; ITO=1;
External interrupt 1 IT1=0; IT1 =1;

Defined in: ZW _basis_api.h

Parameters:

intSrc IN

triggerLevel IN

The external interrupt valid values:

ZW_INTO

ZW_INT1

External interrupt O (PIN P1_6)

External interrupt 1 (PIN P1_7)

The external interrupt trigger level:

TRUE Set the interrupt trigger to high level
/Rising edge
FALSE Set the the interrupt trigger to low level
[Faling edge
Serial API
HOST->ZW: REQ | 0xB9 | intSrc | triggerLevel
Zensys A/S Z-Wave Application Interfaces Page 90 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.3 Z-Wave Transport API

The Z-Wave transport layer controls transfer of data between Z-Wave nodes including retransmission,
frame check and acknowledgement. The Z-Wave transport interface includes functions for transfer of
data to other Z-Wave nodes. Application data received from other nodes is handed over to the
application via the ApplicationCommandHandler function. The ZW_MAX_NODES define defines the
maximum of nodes possible in a Z-Wave network.

5.3.3.1 ZW_SendData
__|

BYTE ZW_SendData(BYTE nodelD,
BYTE *pData,
BYTE datalLength,
BYTE txOptions,
Void (*completedFunc)(BYTE txStatus))

Macro: ZW_SEND_DATA(node,data,length,options,func)

Transmit the data buffer to a single Z-Wave Node or all Z-Wave Nodes (broadcast). The data buffer is
queued to the end of the transmit queue (first in; first out) and when ready for transmission the Z-Wave
protocol layer frames the data with a protocol header in front and a checksum at the end.

The transmit option TRANSMIT_OPTION_ACK requests the destination node to return a transfer
acknowledge to ensure proper transmission. The transmitting node will retry the transmission if no
acknowledge received. The Controller nodes can add the TRANSMIT_OPTION_AUTO_ROUTE flag to
the transmit option parameter. The Controller will then try transmitting the frame via repeater nodes if the
direct transmission failed.

The transmit option TRANSMIT_OPTION_NO_ROUTE force the protocol to send the frame without
routing, even if a response route exist.

The Routing Slave and Enhanced Slave nodes can add the TRANSMIT_OPTION_RETURN_ROUTE
flag to the transmit option parameter. This flag informs the Enhanced/Routing Slave protocol that the
frame about to be transmitted should use the assigned return routes for the concerned nodelD (if any).
The node will then try to use one of the return routes assigned (if a route is unsuccessful the next route is
used and so on), if no routes are valid then transmission will try direct (no route) to nodelD. If the

nodelD = NODE_BROADCAST then the frame will be transmitted to all assigned return route
destinations. If nodelD !'= NODE_BROADCAST then the frame will be transmitted to nodelD using the
assigned return routes for nodelD.

The completedFunc is called when the frame transmission completes, that is when transmitted if ACK is
not requested; when acknowledge received from the destination node, or when routed acknowledge
completed if the frame was transmitted via one or more repeater nodes. The transmit status
TRANSMIT_COMPLETE_NO_ACK indicate that no acknowledge is received from the destination node.
The transmit status TRANSMIT_COMPLETE_FAIL indicate that the Z-Wave network is busy (jammed).

The TRANSMIT_OPTION_LOW_POWER option should only be used when the two nodes that are
communicating are close to each other (<2 meter). In all other cases this option should not be used.

Zensys A/S Z-Wave Application Interfaces Page 91 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

NOTE: Allways use the completeFunc callback to determine when the next frame can be send. Calling
the ZW_SendData or ZW_SendDataMulti in a loop without checking the completeFunc callback will
overflow the transmit queue and eventually fail. The data buffer in the application must not be changed
before completeFunc callback is received because it's only the pointer there is passed to the transmit
queue.

Defined in: ZW_transport_api.h
Return value:

BYTE FALSE If transmit queue overflow

Zensys A/S Z-Wave Application Interfaces Page 92 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

Parameters:

nodelD IN

pData IN

dataLength IN

txOptions IN

Destination node ID
(NODE_BROADCAST == all nodes)
Data buffer pointer

Data buffer length

Transmit option flags:

TRANSMIT_OPTION_LOW_POWER

TRANSMIT_OPTION_NO_ROUTE

TRANSMIT_OPTION_ACK

TRANSMIT_OPTION_AUTO_ROUTE
(Controller API only)

TRANSMIT_OPTION_RETURN_ROUTE
(Routing Slave and Enhanced Slave
API only)

completedFunc Transmit completed call back function

The frame will also be transmitted in case
the source node ID is equal destination
node ID

The maximum size of a frame is 64
bytes. The protocol header and
checksum takes 10 bytes in a single cast
or broadcast frame leaving 54 bytes for
the payload. In case it is a routed single
cast the source routing info takes up to 6
bytes depending on the number of hops
leaving minimum 48 bytes for the
payload.

Transmit at low output power level (1/3 of
normal RF range).

Only send this frame directly, even if a
response route exist

Request acknowledge from destination
node.

Request retransmission via repeater
nodes (at normal output power level).

Send the frame to nodelD using the
return routes assigned for nodelD to the
routing/enhanced slave, if no routes are
valid then transmit directly to nodelD (if
nodelD = NODE_BROADCAST then the
frame will be a BROADCAST).

If return routes exists and the nodelD =
NODE_BROADCAST then the frame will
be transmitted to all assigned return route
destinations. If nodelD !=
NODE_BROADCAST then the frame will
be transmitted via the assigned return
routes for nodelD.

Zensys A/S

Z-Wave Application Interfaces

Page 93 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Callback function Parameters:

txStatus Transmit completion status:
TRANSMIT_COMPLETE_OK Successfully
TRANSMIT_COMPLETE_NO_ACK No acknowledge is received before timeout
from the destination node. Acknowledge is
discarded in case it is received after the
timeout.
TRANSMIT_COMPLETE_FAIL Not possible to transmit data because the
Z-Wave network is busy (jammed).
Serial API:

HOST->ZW: REQ | 0x13 | nodelD | dataLength | pData[] | txOptions | funcID
ZW->HOST: RES | 0x13 | RetVal

ZW->HOST: REQ | 0x13 | funclID | txStatus

Zensys A/S Z-Wave Application Interfaces Page 94 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.3.2 ZW_SendDataMeta (ZW0201/ZW0301 only)
|

BYTE ZW_SendDataMeta(BYTE destNodelD,
BYTE *pData,
BYTE datalLength,
BYTE txOptions,
Void (*completedFunc)(BYTE txStatus))

Macro: ZW_SEND_DATA_META(nodeid, data, length, options, func)
NOTE: This function is only available in Z-Wave 0201 libraries.

Transmit streaming or bulk data in the Z-Wave network. The application must implement a delay of
minimum 35ms after each ZW_SendDataMeta call to ensure that streaming data traffic don’t prevent
control data from getting through in the network. The API call ZW_SendDataMeta can be used by both
slaves and controllers supporting 40kbps. The call also checks that the destination supports 40kbps
except if it is a source based on a slave. Both 40kbps and 9.6kbps hops are allowed in case routing is
necessary.

NOTE: The completedFunc is called when the frame transmission completes in the case that ACK is
not requested; When TRANSMIT_OPTION_ACK is requested the callback function is called when frame
has been acknowledged or all transmission attempts are exausted.

The transmit status TRANSMIT_COMPLETE_NO_ACK indicate that no acknowledge is received from
the destination node. The transmit status TRANSMIT_COMPLETE_FAIL indicate that the Z-Wave
network is busy (jammed).

The Routing Slave and Enhanced Slave nodes can add the TRANSMIT_OPTION_RETURN_ROUTE
flag to the transmit option parameter. This flag informs the Enhanced/Routing Slave protocol that the
frame about to be transmitted should use the assigned return routes for the concerned nodelD (if any).
The node will then try to use one of the return routes assigned (if a route is unsuccessful the next route is
used and so on), if no routes are valid then transmission will try direct (no route) to nodelD. If the

nodelD = NODE_BROADCAST then the frame will be transmitted to all assigned return route
destinations. If nodelD != NODE_BROADCAST then the frame will be transmitted to nodelD using the
assigned return routes for nodelD.

NOTE: Allways use the completeFunc callback to determine when the next frame can be send. Calling
the ZW_SendDataMeta in a loop without checking the completeFunc callback will overflow the transmit
queue and eventually fail. The data buffer in the application must not be changed before completeFunc
callback is received because it's only the pointer there is passed to the transmit queue.

Defined in: ZW_transport_api.h

Return value:

BYTE FALSE If transmit queue overflow or if
destination node is not 40kbit/s
compatible
Zensys A/S Z-Wave Application Interfaces Page 95 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Parameters:

destNodelD IN Destination node ID
pData IN Data buffer pointer
datalLength IN Data buffer length
txOptions IN Transmit option flags:

TRANSMIT_OPTION_LOW_POWER

TRANSMIT_OPTION_ACK

TRANSMIT_OPTION_AUTO_ROUTE
(Controller APl only)
completedFunc Transmit completed call back function
Callback function Parameters:
txStatus IN (see ZW_SendData)
Serial API (Serial API protocol version 4):
HOST->ZW: REQ | 0x18 | destNodelD | dataLength | pData|]
ZW->HOST: RES | 0x18 | RetVal

ZW->HOST: REQ | 0x18 | funclID | txStatus

Node to send Meta data to. Should be
40kbit/s capable

Pointer to data buffer.
Length of buffer

The maximum size of a frame is 64
bytes. The protocol header and
checksum takes 10 bytes in a single cast
or broadcast frame leaving 54 bytes for
the payload. In case it is a routed single
cast the source routing info takes up to 6
bytes depending on the number of hops
leaving minimum 48 bytes for the
payload.

Transmit at low output power level (1/3 of
normal RF range).

Request the destination node to
acknowledge the frame

Request retransmission on single cast

frames via repeater nodes (at normal
output power level)

| txOptions | funcID

Zensys A/S Z-Wave Application Interfaces

Page 96 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.3.3 ZW_SendDataMulti
|

BYTE ZW_SendDataMulti(BYTE *pNodelDList,
BYTE *pData,
BYTE datalLength,
BYTE txOptions,
Void (*completedFunc)(BYTE txStatus))

Macro: ZW_SEND_DATA_MULTI(nodelist,numnodes,data,length,options,func)

NOTE: This function is implemented in Z-Wave Controller APIs, Z-Wave Routing Slave APl and
Z-Wave Enhanced Slave API only.

Transmit the data buffer to a list of Z-Wave Nodes (multicast frame). If the transmit optionflag
TRANSMIT_OPTION_ACK is set the data buffer is also sent as a singlecast frame to each of the
Z-Wave Nodes in the node list.

NOTE: For Bridge Controller based applications only the Controller node personality (not the local virtual
slave nodes) will receive the actual multicast frame, but all personalities (Controller node and all virtual
slave nodes) will receive its designated singlecast frame (if any) if the multicast frame was transmitted
with the transmit optionflag TRANSMIT_OPTION_ACK set.

The completedFunc is called when the frame transmission completes in the case that ACK is not
requested; When TRANSMIT_OPTION_ACK is requested the callback function is called when all single
casts have been transmitted and acknowledged.

The transmit status TRANSMIT_COMPLETE_NO_ACK indicate that no acknowledge is received from
the destination node. The transmit status TRANSMIT_COMPLETE_FAIL indicate that the Z-Wave
network is busy (jammed). The data pointed to by pNodelDList should not be changed before the
callback is called.

NOTE: Allways use the completeFunc callback to determine when the next frame can be send. Calling
the ZW_SendData or ZW_SendDataMulti in a loop without checking the completeFunc callback will
overflow the transmit queue and eventually fail. The data buffer in the application must not be changed
before completeFunc callback is received because it’s only the pointer there is passed to the transmit
queue.

Defined in: ZW _transport_api.h

Return value:

BYTE FALSE If transmit queue overflow

Zensys A/S Z-Wave Application Interfaces Page 97 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Parameters:

pNodelDList IN List of destination node ID's

Pdata IN Data buffer pointer
DatalLength IN Data buffer length
TxOptions IN Transmit option flags:

TRANSMIT_OPTION_LOW_POWER

TRANSMIT_OPTION_ACK

TRANSMIT_OPTION_AUTO_ROUTE
(Controller API only)
completedFunc Transmit completed call back function
Callback function Parameters:
txStatus IN (see ZW_SendData)

Serial API:

This is a fixed length bit-mask.

The maximum size of a packet is 64
bytes. The protocol header for a multicast
depends on the destination node IDs
leaving between 25-53 bytes for the
payload.

The size of the protocol header and
checksum for a multicast frame is:

((MaxNodelD - (MinNodelD - 1) &
OXE0)+7) >> 3) + 10

where MaxNodelD is the largest node ID
number and MinNodelD is the smallest.

Transmit at low output power level (1/3 of
normal RF range).

The multicast frame will be followed by a
number of single cast frames to each of
the destination nodes and request
acknowledge from each destination node.

Request retransmission on single cast
frames via repeater nodes (at normal
output power level)

HOST->ZW: REQ | 0x14 | numberNodes | pNodelDList[] | dataLength | pData[] | txOptions | funcld

ZW->HOST: RES | 0x14 | RetVal

ZW->HOST: REQ | 0x14 | funcld | txStatus

Zensys A/S Z-Wave Application Interfaces

Page 98 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.3.4 ZW_SendDataAbort
|

void ZW_SendDataAbort()
Macro: ZW_SEND_DATA_ABORT

Abort the ongoing transmit started with ZW_SendData() or ZW_SendDataMulti(). If an ongoing
transmission is aborted the callback function from the send call will return with the status
TRANSMIT_COMPLETE_NO_ACK.

Defined in: ZW _transport_api.h
Serial API:

HOST->ZW: REQ | 0x16

5.3.3.5 ZW_LockRoute
|

void ZW_LockRoute(BYTE bNodelD)

Macro: ZW_LOCK_RESPONSE_ROUTE(node)

The function is used to assure that the response route don’t disappear when transmitting a sequence of
frames to the same node ID. This is especially important when trying to route to a node that normally
moves around in the network, i.e. a battery operated controller.

This function lock and unlock only one response route for a given node ID. A buffer is allocated with
space for two response routes. The buffer is overwritten every time the node gets a routed frame from
another node.

Receiving a frame within direct range from a node that already exists as a response route destination will
erase this response route in the buffer. The application has full control over when to lock and unlock the
response route.

If the TRANSMIT_OPTION_RETURN_ROUTE flag is set the node use the return routes (see
Z\W_Assign_Return_Routes), but if the flag is not set it first checks if a response route exist for the
destination node otherwise it try direct.

If a routed frame is received in the ApplicationCommandHandler while a response route is locked
RECEIVE_STATUS_ROUTED_BUSY bit will be set in rxStatus. This flag can be used by the application
to put another node on hold until the lock is released.

Zensys A/S Z-Wave Application Interfaces Page 99 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Defined in: Z\W_transport_api.h

Parameters:

bNodelD IN Setting bNodelD to a response route
destination node ID will lock it. If
bNodelD is set to 0x00 the previous
locked response route is unlocked

Serial API:

HOST->ZW: REQ | 0x90 | bNodelD

5.3.3.6 ZW_SendConst
|

void ZW_SendConst(void)
Macro: ZW_SEND_CONST()

This function causes the transmitter to send out a constant signal on a fixed frequency until another RF
function is called.

This API call can only be called in production test mode from ApplicationTestPoll.
Defined in: ZW _transport_api.h

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 100 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.4 Z-Wave TRIAC API

The built-in TRIAC Controller is targeted at TRIAC or FET controlled light / power dimming applications.
For a detailed description of the TRIAC refer to [25] or [26] depending on the single chip used. The
Application software can use the following TRIAC API calls to control the ZW0102/2W0201/ZW0301
TRIAC Controller.

5.3.4.1 TRIAC_Init
__|

ZW0102 version:

void TRIAC_Init(BYTE wiringType,
BYTE mainsfreq)

Macros:
ZW_TRIAC_INIT
ZW_TRIAC_INIT_2 WIRE

TRIAC _Init initializes the ZW0102 ASIC's integrated TRIAC for mainsfreq mains frequency usage and
wiring system type. Sets the ZEROX and TRIAC pins up for triac control.

Defined in: ZW_triac_api.h
Parameters:
wiringType IN Wiring types:
TRIAC_3 WIRE 3-wire TRIAC control. This kind of
control provides improved efficiency, as

well as reduced harmonics and
mechanical noise.

TRIAC_2_WIRE 2-wire TRIAC control

mainsfreq IN Mains frequencies:
FREQUENCY_50HZ Controlling a 50Hz AC mains supply
FREQUENCY_60HZ Controlling a 60Hz AC mains supply

Serial API (Not supported)

ZW0201 and ZW0301 version:

void TRIAC Init(BYTE bridgeType,
BYTE mainsfreq,
BYTE voltageDrop,
BYTE minimumPulse)

Zensys A/S Z-Wave Application Interfaces Page 101 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

Macros:

ZW_TRIAC_INIT

ZW_TRIAC_INIT_2_WIRE

TRIAC_Init initializes the ZW0201 ASIC's integrated TRIAC for mainsfreq AC mains frequency usage,
bridge type, voltageDrop is the voltage drop across the ZERX input and the minimumPulse is the
minimum pulse time of the TRIAC output signal. Configures the ZEROX and TRIAC pins for triac control.

Defined in:
Parameters:

bridgeType IN

mainsfreq IN

voltageDrop IN

minimumPulse
IN

ZW _triac_api.h

Bridge types:

TRIAC_FULLBRIDGE

TRIAC_HALFBRIDGE

AC Mains frequencies:
FREQUENCY_50HZ
FREQUENCY_60HZ

Valid values for voltageDrop are from 0

to 2000mv with 100mv step.

Valid values for the triac minimum pulse
are from 64 us to 512 us with 64 us step.

Serial API (Not supported)

The TRIAC signal is triggered ONLY on
the rising edge of the ZEROX signal
which is fed through a FULL diode bridge.

The TRIAC signal is triggered on the
rising AND the falling edge of the ZEROX
signal which is fed through a NON-FULL
diode bridge.

Controlling a 50Hz AC mains supply
Controlling a 60Hz AC mains supply

The voltage drop values are defined as
constants and are listed in the
ZW _triac_api.h header file.

The minimum pulse values are defined
as constants and are listed in the
Z\W_triac_api.h.

Zensys A/S

Z-Wave Application Interfaces

Page 102 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.4.2 TRIAC_SetDimLevel
|

void TRIAC_SetDimLevel(BYTE dimLevel)
Macros:
ZW_TRIAC_DIM_SET_LEVEL(dimLevel)
ZW_TRIAC_LIGHT_SET_LEVEL(lightLevel)
TRIAC_SetDimLevel turns the triac controller ON and sets it to dim at dimLevel (1-99) or sets the light
level to lightLevel (1-99) if the ZW_TRIAC_LIGHT_SET_LEVEL macro is used. This is done for the
mains frequency selected in the TRIAC_Init function call (50/60Hz).
Defined in: ZW _triac_api.h
Parameters:

dimLevel IN Level (1...99)

Serial API (Not supported)

5.3.4.3 TRIAC_Off
|

void TRIAC_Off(void)

Macro:

ZW_TRIAC_OFF

TRIAC_Off turns the triac controller OFF.
Defined in: ZW_triac_api.h

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 103 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.5 Z-Wave Timer API

The timer is based on a “tick-function” that is activated from the RF timer interrupt function every 10
msec. The “tick-function” will handle a global tick counter and a number of active timers. The global tick
counter is incremented and the active timers are decremented on each “tick”. When an active timer value
changes from 1 to 0, the registered timeout function is called. The timeout function is called from the
Z-Wave main loop (non-interrupt environment).

The timer implementation is targeted for shorter (second) timeout functionality. The global tick counter
and active timers are inaccurate because they stops while changing RF transmission direction and
during sleep mode. Therefore the global tick counter and active timers will pick up where they left off
when leaving sleep mode.

Global tick counter:

WORD tickTime

5.3.5.1 TimerStart

BYTE TimerStart(VOID_CALLBACKFUNC(func)(), BYTE timerTicks, BYTE repeats)

Macro: ZW_TIMER_START (func,ticks,repeats)

Register a function that is called when the specified time has elapsed. Remember to check if the timer is
allocated by testing the return value. The call back function is called "repeats" times before the timer is
stopped. It’s possible to have up to 5 timers running simultaneously on a slave and 4 timers on a
controller. Additional software timers can be implemented by for example using the PWM API as “tick-
function”.

Defined in: ZW_timer_api.h

Return value:

BYTE Timer handle (timer table index). OxFF
is returned if the timer start operation
failed.

Parameters:

func IN Timeout function address (not NULL).

timerTicks IN Timeout value (value * 10 msec.).
Predefined values:

TIMER_ONE_SECOND

repeats IN Number of function calls. Max value is
253. Predefined values:

TIMER_ONE_TIME

TIMER_FOREVER

Zensys A/S Z-Wave Application Interfaces Page 104 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Serial API (Not supported)

5.3.5.2 TimerRestart

BYTE TimerRestart(BYTE timerHandle)

Macro: ZW_TIMER_RESTART (handle)

Set the specified timer’s tick count to the initial value (extend timeout value).

NOTE: There is no protection in the API against calling this function with a wrong handler, so care should
be taken not to use a handler of a timer that has already expired or has been canceled.

Defined in: ZW_timer_api.h

Return value:

BYTE TRUE If timer restarted
Parameters:

timerHandle IN Timer to restart

Serial API (Not supported)

5.3.5.3 TimerCancel

BYTE TimerCancel(BYTE timerHandle)
Macro: ZW_TIMER_CANCEL(handle)
Stop the specified timer.

NOTE: There is no protection in the API against calling this function with a wrong handler, so care should
be taken not to use a handler of a timer that has already expired.

Defined in: ZW_timer_api.h

Return value:

BYTE TRUE If timer cancelled
Parameters:

timerHandle IN Timer number to stop

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 105 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

53.6 Z-Wave PWM API

The Z-Wave PWM APl is an API that grants the application programmer protected access to a
ZW0102/ZW0201/ZW0301 PWM / Timer interrupt. The hardware TIMER?2 is used by the PWM API.

5.3.6.1 2ZW_PWMSetup

BYTE ZW_PWMSetup (BYTE bValue)

Macro: ZW_PWM_SETUP(value)

Configure the mode and enables/disables the PWM/Timer.
Note:

ZW0102 version: When configured as PWM the pin P3_4 (defined as bit register
TO) will be enabled as output.

ZW0201/2W0301 version: When configured as PWM the pin P1_6 will be enabled as output.

Defined in: ZW_appltimer_api.h

Parameters (ZW0102 version):

bValue IN PWM_MODE_BIT (bit 0)
0 TIMER mode
1 PWM mode

TIMER_RUN_BIT (bit 1)
0 Timer is inactive and counter is cleared.

1 Timer is active and counter is enabled.

(bit 2—7) don’t care.

Zensys A/S Z-Wave Application Interfaces Page 106 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Parameters (ZW0201/2ZW0301 version):

bValue IN TIMER_RUN_BIT (bit 0)
0 Timer is inactive and counter is cleared.
1 Timer is active and counter is enabled.

PWM_MODE_BIT (bit 1)

0 TIMER mode

1 PWM mode

PRESCALER_BIT (bit 2)

0 Timer runs with CPU_FREQ/4 speed.

1 Timer runs with CPU_FREQ/512 speed.
RELOAD_BIT (bit 3)

0 The timer stops upon overflow.

1 The timer reloads its counter registers
upon overflow.

(bit 4-7) don’t care.

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 107 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.6.2 ZW_PWMPrescale
BYTE ZW_PWMPrescale(BYTE bValueMSB, BYTE bValueLSB)
Macro ZW_PWM_PRESCALE(msb,Isb)

This function sets up either the PWM period or the timeout if timer mode is selected. CPU_FREQ is
defined in a Z-Wave header file.

ZW0102 version:
PWM mode:
Total period: Tpwm = 255*(msb+1)/CPU_FREQ
High time of PWM: ThPWM = (msb+1)*Isb/CPU_FREQ
Timer mode (Interrupt period):
Tint = 255*(msb*256+Isb+1)/CPU_FREQ
ZW0201/2W0301 version:
PWM mode:
Total period: Tpwm = thPWM + tIPWM
High time of PWM: thPWM = (msb*prescaler)/CPU_FREQ
Low time of PWM tIPWM = (LSB*prescaler)/CPU_FREQ
Timer mode (Interrupt period):
Tint = (msb*256+Isb+1)*prescaler/CPU_FREQ
Defined in: ZW _appltimer_api.h
Parameters:
bValueMSB IN Used to calculate PWM period and PWM
“High” time or interrupt timeout (See
above formular).
bValueLSB IN Used to calculate PWM period and PWM
“Low” time or interrupt timeout (See

above formular).

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 108 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

5.3.6.3 ZW_PWMClearInterrupt

BYTE ZW_PWMClearInterrupt(void)

Macro ZW _PWM_CLEAR_INTERRUPT()

Clears the Timer interrupt. Must be done by software when servicing interrupt.
Defined in: ZW_appltimer_api.h

Serial API (Not supported)

5.3.6.4 ZW_PWMEnable

BYTE ZW_PWMEnable(BOOL bValue)

Macro ZW_PWM_INT_ENABLE (value)

Enables or disables the ZW_PWM interrupt.
Defined in: Z\W_appltimer_api.h

Parameters:

bValue IN TRUE Interrupt enabled.

FALSE Interrupt disabled.

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces

CONFIDENTIAL

Page 109 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.7 Z-Wave Memory API

The memory application interface handles accesses to the application area of the EEPROM/flash.
Slave and routing slave nodes use flash for storing application data. Enhanced slave and all controller
nodes use an external EEPROM for storing application data. The Z-Wave protocol uses the first part of
the external EEPROM for home ID, node ID, routing table etc. The SPI interface on the ZWO0x0x is used
to access the external EEPROM. Therefore can the CLK, MOSI, and MISO pins only be used as GPIO
by the application on a slave and routing slave.

When using the following memory functions, memory offset 0 is the first byte of the reserved area for
application data.

NOTE: The CPU will be halted while the APl is writing to flash memory, so care should be taken not to
write to flash to often.

5.3.7.1 MemoryGetIlD
|

void MemoryGetID(BYTE *pHomelD, BYTE *pNodelD)
Macro: ZW_MEMORY_GET_ID(homelD, nodelD)

The MemoryGetID function copy the Home-ID and Node-ID from the non-volatile memory to the
specified RAM addresses.

NOTE: A NULL pointer can be given as the pHomelD parameter if the application is only intereste in
reading the Node ID.

Defined in: ZW_mem_api.h
Parameters:

pHomelD OUT Home-ID pointer
pNodelD OUT Node-ID pointer
Serial API:

HOST->ZW: REQ | 0x20

ZW->HOST: RES | 0x20 | Homeld(4 bytes) | Nodeld

Zensys A/S Z-Wave Application Interfaces Page 110 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.7.2 MemoryGetByte
|

BYTE MemoryGetByte(WORD offset)

Macro: ZW_MEM_GET_BYTE(offset)

Read one byte from the non-volatile memory

If a write is in progress the write queue will be checked for the actual data.
Defined in: ZW_mem_api.h

Return value:

BYTE Data from the application area of the
EEPROM

Parameters:

offset IN Application area offset

Serial API:

HOST->ZW: REQ | 0x21 | offset (2 bytes)

ZW->HOST: RES | 0x21 | RetVal

Zensys A/S Z-Wave Application Interfaces Page 111 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.7.3 MemoryPutByte
|

BYTE MemoryPutByte(WORD offset, BYTE data)
Macro: ZW_MEM_PUT_BYTE(offset,data)
Write one byte to the application area of the non-volatile memory

On controllers and enhanced slaves this function works on EEPROM and it should be considered that
the write operation have a somewhat long write time (2-5 msec.).

On slaves and routing slaves this function works on flash RAM so writing one byte will cause a write to a
whole flash page of 128 and 256 bytes for the ZW0102 and ZW0201 consequently. While the write takes
place the CPU will be halted in 15-25 msec. and will therefore not be able to execute code or receive
frames, so care should be taken not to disrupt radio communication or other time critical functions when
using this function.

Defined in: ZW_mem_api.h

Return value:

BYTE FALSE If write buffer full.
Parameters:

offset IN Application area offset

data IN Data to store

Serial API:

HOST->ZW: REQ | 0x22 | offset(2bytes) | data

ZW->HOST: RES | 0x22 | RetVal

Zensys A/S Z-Wave Application Interfaces Page 112 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.7.4 MemoryGetBuffer
|

void MemoryGetBuffer(WORD offset, BYTE *buffer, BYTE length)

Macro: ZW_MEM_GET_BUFFER(offset,buffer,length)

Read a number of bytes from the application area of the EEPROM to a RAM buffer.
If a write operation is in progress the write queue will be checked for the actual data.

Defined in: ZW_mem_api.h

Parameters:

offset IN Application area offset
buffer IN Buffer pointer

length IN Number of bytes to read
Serial API:

HOST->ZW: REQ | 0x23 | offset(2 bytes) | length

ZW->HOST: RES | 0x23 | buffer|]

Zensys A/S Z-Wave Application Interfaces Page 113 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.7.5 MemoryPutBuffer
|

BYTE MemoryPutBuffer(WORD offset, BYTE *buffer, WORD length,
VOID_CALLBACKFUNC(func)(void))

Macro: ZW_MEM_PUT_BUFFER(offset,buffer,length, func)
Copy number of bytes from a RAM buffer to the application area of the non-volatile memory.

The write operation requires some time to complete (2-5msec per byte); therefore the data buffer must
be in "static" memory. The data buffer can be reused when the completion callback function is called.

If an area is to be set to zero there is no need to specify a buffer, just specify a NULL pointer.
On slaves and routing slaves this function works on flash RAM so writing will cause a write to a whole
flash page of 128 and 256 bytes for the ZW0102 and ZW0201 consequently. While the write takes place
the CPU will be halted in 15-25 msec. and will therefore not be able to execute code or receive frames,
so care should be taken not to disrupt radio communication or other time critical functions when using
this function.

Defined in: ZW_mem_api.h

Return value:

BYTE FALSE If the buffer put queue is full.
Parameters:

offset IN Application area offset

buffer IN Buffer pointer If NULL all of the area will be set to 0x00
length IN Number of bytes to read

func IN Buffer write completed function pointer

Serial API:

HOST->ZW: REQ | 0x24 | offset(2bytes) | length(2bytes) | buffer[] | funclD
ZW->HOST: RES | 0x24 | RetVal

ZW->HOST: REQ | 0x24 | funclD

Zensys A/S Z-Wave Application Interfaces Page 114 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.7.6 ZW_Eeprominit
|

BOOL ZW_EepromInit(BYTE *homelD)
Macro: ZW_EEPROM_INIT(HOMEID)
NOTE: This function is only implemented in Z-Wave Controller and Enhanced Slave APIs.

Initialize the external EEPROM by writing zeros to the entire EEPROM. The API then writes the content
of homelD if not zero to the home ID address in the external EEPROM.

This API call can only be called in production test mode from ApplicationTestPoll.

NOTE: This API call is only meant for small-scale production where pre-programmed EEPROMs or a
production EEPROM programmer is not available.

Defined in: ZW_mem_api.h

Return value:

BOOL TRUE If the EEPROM initialized successfully
FALSE Initialization failed

Parameters:

homelD IN The home ID to be written to the external
EEPROM.

Serial API (Not supported)

5.3.7.7 ZW_MemoryFlush
L __|]

void ZW_MemoryFlush(void)
Macro: ZW_MEM_FLUSH()
This call writes data immediately to the FLASH from the temporary SRAM buffer.
The data to be written to FLASH are not written immediately to the FLASH. Instead it is saved in a SRAM
buffer and then written when the RF is not active. This function can be used to write data immediately to
FLASH without waiting for the RF to be idle.
NOTE: This function is only implemented in Slave and Routing Slave API libraries because they are the
only libaries that use a temporary SRAM buffer. The other libraries use an external EEPROM as non-
volatile memory . Data is written directly to the EEPROM.

Defined in: ZW_mem_api.h

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 115 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.8 Z-Wave ADC API

The ADC API is both a slave and a controller application’s interface to the ADC unit in the
ZW0102/ZW0201/ZW0301. For a detailed description of the ZW0201/ZW0301 ADC refer to [27].

5.3.8.1 ADC_On (ZW0102 only)
|

void ADC_On()
Macro: ZW_ADC_ON

Call turns the power on to the ADC unit. Be aware that the ADC is default powered off.
ZW0201 and ZW0301 platforms automatically turn on the ADC when ADC_Start is called.
Defined in: ZW _adcdriv_api.h

Serial API (Not supported)

5.3.8.2 ADC_Off
|

void ADC_Off()

Macro: ZW_ADC_OFF

Call turns the power off to the ADC unit.

Units not depending on an operational ADC during sleep (e.g. for keyboard decoding) may save battery
lifetime by turning off the ADC before entering sleep mode.

Defined in: ZW_adcdriv_api.h

Serial API (Not supported)

5.3.8.3 ADC_Start
__|

void ADC_Start()
Macro: ZW_ADC_START

Start the conversion process.
Defined in: ZW_adcdriv_api.h

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 116 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.8.4 ADC_Stop
|

void ADC_Stop()
Macro: ZW_ADC_STOP

Stop the conversion process.
Defined in: ZW _adcdriv_api.h

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 117 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.8.5 ADC_Init
|

ZW0102 version:

Void ADC_Init(BYTE mode, BYTE ref, BYTE pin)
Macro: ZW_ADC_INIT(MODE,REFRENCE,INPUT)

Initialize the ADC unit to work in the wanted conversion mode etc. Remember to power on the ADC unit
before configuring it. The ADC unit can work in one of four different modes.

The ADC unit has 2 multiplexed inputs. And can be referenced by either the VCC voltage or internal
bandgap reference voltage

Defined in: ZW_adcdriv_api.h
Parameters:

mode IN The ADC mode to be used the mode
value can be on of the following:

ADC_SINGLE_MODE Single conversion mode: The ADC will
always stop after one conversion. The
ADC should be started each time a
conversion is wanted.

ADC_MULTI_CON_MODE Multi conversion continues mode: The
ADC will always sample the input until
the ADC is stopped.

ADC_MULTI_STP_MODE Multi conversion stop mode: The ADC
will always sample the input until either
the user stops the ADC or the sampled
value is equal or greater than a specified
threshold.

ADC_MULTI_RST_MODE Multi conversion reset generating mode:
The ADC will always sample the input
until either the user stops the ADC or the
sampled value is equal or greater than a
specified threshold, in that case the Adc
will generate a reset signal to the CPU.

Zensys A/S Z-Wave Application Interfaces Page 118 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

ref IN The source of the reference voltage used
for the ADC:
ADC_REF_VDD Internal voltage reference is VDD (supply
voltage).
ADC_REF V125 Internal voltage reference is 1.25V
generated internally.
pin IN Select the I/0 pin to be used as ADC
input:
ADC_PIN_1 Equal to ADC1 in hardware
documentation.
ADC_PIN_2 Equal to ADC2 in hardware
documentation.
Zensys A/S Z-Wave Application Interfaces Page 119 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

ZW0201/ZW0301 version:

Void ADC_Init(BYTE mode, BYTE upper_ref, BYTE lower_ref, BYTE pin_en)
Macro: ZW_ADC_INIT (MODE, UPPER_REF, LOWER_REF, INPUT)

Initialize the ADC unit to work in the wanted conversion mode etc. Call also power on the ADC unit. The
ADC unit can work in one of two different modes.

The ADC unit has 5 multiplexed inputs. The Upper reference voltage can be set to be VCC, internal
bandgab or external voltage on ADC_PIN_1. Lower reference voltage can be set to be either GND or
external voltage on pin ADC_PIN_2.

ADC_Init only enable one or more of the /O pins (ADC_PIN_1, ADC_PIN_2, ADC_PIN_3, ADC_PIN_4
and ADC_BAT (internal “pin”)) as ADC inputs pins. No I/O pin that was enabled in the ADC_Init call will
be selected as the active ADC input. To select the active ADC input, ADC_SelectPin must be called.

Defined in: ZW_adcdriv_api.h
Parameters:
mode IN The ADC mode to be used the mode
value can be on of the following:
ADC_SINGLE_MODE Single conversion mode: The ADC will
always stop after one conversion. The
ADC should be started each time a
conversion is wanted.
ADC_MULTI_CON_MODE Multi conversion continues mode: The
ADC will always sample the input until
the ADC is stopped.
upper_ref IN The source of the upper reference
voltage used for the ADC:
ADC_REF_U_EXT External voltage reference applied on pin
PO0.0
ADC _REF_U BGAB Internal voltage reference is 1.21V
generated internally by a bandgap
reference.
ADC_REF_U VDD Internal voltage reference is VDD (supply
voltage).
lower_ref IN The source of the upper reference
voltage used for the ADC:
ADC_REF_L EXT External voltage reference applied on pin
PO.1
ADC_REF_L_VSS Internal ground.
Zensys A/S Z-Wave Application Interfaces Page 120 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

pin_en IN Enabling of the pins to be used by the
ADC. To enabled pin 1 and pin 3 the
value should be set to:
ADC_PIN_1 | ADC_PIN_3.

ADC_PIN_1 (I/0 P0.0) Equal to ADCO in hardware
documentation.

ADC_PIN_2 (/0 P0.1) Equal to ADC1 in hardware
documentation.

ADC_PIN_3 (I/0 P1.0) Equal to ADC2 in hardware
documentation.

ADC_PIN_4 (/0 P1.1) Equal to ADC3 in hardware
documentation.

ADC_PIN_BATT Using the ADC as battery monitor for

battery operated devices. Regarding
details refer to [21]

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 121 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.8.6 ADC_SelectPin
|

ADC_SelectPin(BYTE adcPin);

Macro:

ZW_ADC_SELECT_AD1 -select pin 1 as the ADC input

ZW_ADC _SELECT_ADZ2 - select pin 2 as the ADC input
ZW_ADC_SELECT_AD3 - select pin 3 as the ADC input (ZW0201/ZwW0301 only)
ZW_ADC_SELECT_AD4 - select pin 4 as the ADC input (ZW0201/ZwW0301 only)
Select a pin to use as the active ADC input.

Defined in: ZW_adcdriv_api.h

Parameters:
adcPin IN The pin to use as ADC input:
ADC_PIN_1
ADC_PIN_2
ADC_PIN_3 ZW0201/ZW0301 only
ADC_PIN_4 ZW0201/ZW0301 only

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 122 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.8.7 ADC_Buf (ZW0201/ZW0301 only)
|

ADC _Buf (BYTE enable);

Macro:

ZW_ADC_BUFFER_ENABLE - Enable the input buffer.

ZW_ADC BUFFER_DISABLE - Disable the input buffer.

Enable / disable an input buffer between the analog input and the ADC converter. Default is the input
buffer disabled. If a high impedance driver is used on the input, this can lower the sample rate. The input

buffer can be enabled to achieve high sample rate when using high impedance driver.

Defined in: ZW_adcdriv_api.h

Parameters:

enable IN Switch the input buffer on/off:
TRUE Switch the input buffer on.
FALSE Switch the input buffer off.

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 123 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.8.8 ADC_SetAZPL (ZW0201/ZW0301 only)
|

ADC_SetAZPL (BYTE azpl);
Macro: ZW_ADC_SET_AZPL(PERIOD)

Set the length of the ADC sample period. The length of the period depends on the source impedance.
Default value is ADC_AZPL _128.

Defined in: ZW _adcdriv_api.h
Parameters:
apzl IN Length of the ADC auto zero period:

ADC_AZPL_1024 Set the sample period to 1024 clocks,
valid for high impedance sources. Only
valid for 8 bit resolution.

ADC_AZPL_512 Set the sample period to 512 clocks, valid
for medium to high impedance sources.
Only valid for 8 bit resolution.

ADC_AZPL_256 Set the sample period to 256 clocks, valid

for medium to low impedance sources.
Only valid for 8 bit resolution.

ADC _AZPL_128 Set the sample period to 128 clocks, valid
for low impedance sources. Valid for both
8 bit and 12 bit resolution.

Serial API (Not supported)

5.3.8.9 ADC_SetResolution (ZW0201/ZW0301 only)
|

ADC_SetResolution (BYTE reso);

Macro:
ZW_ADC_RESOLUTION_8 - Set the ADC resolution to 8 bit.
ZW_ADC_RESOLUTION_12 - Set the ADC resolution to 12 bit.

Set the resolution of the ADC. Note: ADC_12_BIT only work in single step mode.

Zensys A/S Z-Wave Application Interfaces Page 124 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Defined in: ZW_adcdriv_api.h

Parameters:

reso IN The resolution of the ADC
ADC 8 BIT Set the ADC resolution to 8 bit.
ADC 12 BIT Set the ADC resolution to 12 bit.

Serial API (Not supported)

5.3.8.10 ADC_SetThresMode (ZW0201/ZW0301 only)
__|

ADC_SetThresMode (BYTE thresMode);

Macro:

ZW_ADC_THRESHOLD_UP
ADC fire when input above/equal to the threshold value.

ZW_ADC_THRESHOLD_LO
ADC fire when input below/equal to the threshold value.

Set the ADC threshold type.
Defined in: ZW_adcdriv_api.h
Parameters:
thresMode IN The ADC threshold mode.

ADC_THRES_ UPPER The ADC fire when input is above/equal
to the threshold value.

ADC_THRES LOWER The ADC fire when input is below/equal
to the threshold value.

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 125 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.8.11 ADC_ SetThres
|

Z\W0102 version:

void ADC_SetThres(BYTE thresHold)

Macro: ZW_ADC_SET_THRESHOLD(THRES)

Set the ADC threshold value. The threshold value is used to trigger an event when the 8 MSB of the
srﬁc:gzl:ed value is equal or greater than the threshold value. The event triggered depend on the ADC

Single conversion mode: The ADC interrupt routine will be called and the ADC will stop converting.

Multi conversion continues mode: The ADC interrupt routine will be called and the ADC will continue
converting.

Multi conversion stop mode: The ADC interrupt routine will be called, and the ADC will stop converting.

Multi conversion reset generating mode: No interrupt will be called but the ADC will generate a reset
signal to the CPU.

Defined in: ZW_adcdriv_api.h
Parameters:

thresHold IN The ADC threshold value, it ranges from
0 to 255.

Serial API (Not supported)

ZW0201/2W0301 version:
void ADC_SetThres(WORD thresHold)
Macro: ZW_ADC_SET_THRESHOLD(THRES)
Set the ADC threshold value. Depending on the threshold mode, the threshold value is used to trigger an
event when the sampled value is above/equal or below/equal the threshold value. The event triggered
depend on the ADC mode:
Single conversion mode: The ADC interrupt will fire and the ADC will stop converting.
Multi conversion continues mode: The ADC interrupt will fire and the ADC will continue converting.
Defined in: ZW_adcdriv_api.h
Parameters:

thresHold IN The ADC threshold value, it ranges from
0 to 4095.

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 126 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.8.12 ADC_Int
|

void ADC_Int(BYTE enable)

Macro:
ZW_ADC _INT_ENABLE
ZW_ADC_INT_DISABLE

Call will enable or disable the ADC interrupt. If enabled an interrupt routine must be defined. Default is
the ADC interrupt disabled.

NOTE: If the ADC interrupt is used, then the ADC interrupt flag should be reset before exit of interrupt
routine by calling ZW_ADC_CLR_FLAG.

Defined in: Z\W_adcdriv_api.h

Parameters:

enable IN The start of the ADC interrupt routine.
TRUE Enables ADC interrupt.
FALSE Disables ADC interrupt.

Serial API (Not supported)

5.3.8.13 ADC_IntFlagClr
|

void ADC_IntFlagClr()
Macro: ZW_ADC _CLR _FLAG

Clear the ADC interrupt flag.
Defined in: ZW_adcdriv_api.h

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 127 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.8.14 ADC_SetSamplingRate (ZW0102 only)
|

void ADC_SetSamplingRate(BYTE rate)
Macro: ZW_ADC_SAMPLE_RATE(RATE)

Set the sampling rate of the ADC unit.

The ADC sampling rate can be set to on of 64 discrete frequencies. The sampling rate frequency can be
calculated as follow:

ADC sampling rate in Hz = CPU_FREQ/(176*rate), where rate = 1 to 64
NOTE: The rate value must not be selected to a value that results in a sampling rate frequency above
22.7 kHz. If for example the CPU_FREQ is 7.376974MHz. The lowest rate is 2 yielding a sample rate
frequency of 20.96KHz

Defined in: ZW_adcdriv_api.h

Parameters:

rate IN The sampling rate of the ADC unit. The
rate value can be from 1 to 64.

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 128 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.8.15 ADC_GetRes
|

WORD ADC_GetRes()
Macro: ZW_ADC_GET_READING

Z\W0102 version:
The call returns the result of the ADC conversion. Only the first 10 LSB are used. In single conversion

mode the call will return the value ADC_NOT_FINISHED in case conversion isn’t finished yet. In the
other modes the call return the latest generated sample.

Defined in: ZW_adcdriv_api.h
Return value:
WORD Returns the unsigned 16-bit value
representing the result of the ADC
conversion.
Serial API (Not supported)
ZW0201/2W0301 version:
The call returns the result of the ADC conversion. The return value is an 8-bit or 12-bit value depending
on if the ADC is in 8-bit or 12-bit resolution mode. The call will return the value ADC_NOT_FINISHED in
case conversion isn’t finished yet.
Defined in: ZW _adcdriv_api.h
Return value:
WORD Returns the unsigned 16-bit value
representing the result of the ADC

conversion.

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 129 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.9 Z-Wave Power API

The purpose of the Power APl is to define functions that make it easy for the Z-Wave application
developer to use the power management capabilities of the ZW0102/Z2W0201/ZW0301 ASIC. The API
can be used both for slave and controller applications.

In ZW0102 the lowest possible power consumption that can be reached when in sleep mode is achieved
by running with 32Khz oscillator and powering down the main clock oscillator. In controllers and
enhanced slaves this is done in the protocol level otherwise the clock switch should be done in the
application layer.

Controllers and Enhanced slaves: when the protocol is idle, the RF will be shut down if the listening
property is off. The protocol then will switch to the 32kHz oscillator and power down the main crystal
oscillator. After that the ZW0102 will go in power down mode. The ZW0102 will be waked by the RTC
interrupt. The ZW0102 can also be awaked by external input interrupt, ADC interrupts, or the timer
interrupts if they are enabled.

Slaves with listening property Enabled: when the protocol is idle then the ZW0102 will go in power down
mode. The ZW0102 can be awaked by the same interrupts as in the case of enhanced slaves or in
addition by the RF interrupt. If less power consumption is wanted, then the RF should be power downed.
Enhanced slaves can be switched to the 32kHz oscillator and the main crystal oscillator should be
powered down. If this is done, then the RF interrupt cannot wake the ZW012.

Normal slaves with listening property disabled: when the protocol is idle then the RF will be shut down.
The protocol then will go in power down mode. The ZW0102 can be awaked by the same interrupts as in
the case of controllers and enhanced slave. If less power consumption is required, the
PWR_SET_STOP_MODE can be used.

5.3.9.1 PWR_SetStopMode (ZW0102 only)
|

void PWR_SetStopMode

Macro: ZW_PWR_SET_STOP_MODE

PWR_SetStopMode This function used to set the ASIC in the lowest power mode called stop mode. In
this mode the CPU will halt and all the ASIC internal peripherals except for the ADC will stop. The only

way to wake up from this mode is either by power recycle or system reset.

Note: In controllers and enhanced slaves the Z-Wave library switch to 32kHz clock and shut down the
main oscillator. Doing this enable the ADC to wake up the ZW0102.

Defined in: ZW_power_api.h
Serial API

HOST->ZW: REQ | 0xBO

Zensys A/S Z-Wave Application Interfaces Page 130 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.9.2 PWR_CIK_PD (ZW0102 only)
|

void PWR_CIk_PD (BYTE flags)
Macro: ZW_PWR_CLK_POWERDOWN(FLAGS)
PWR_CIk_PD shut down the clock oscillators specified in the flags parameter.

Note: Powering off both clock oscillator will put the ASIC in the lowest possible power mode. The only
way to get out from this mode is by power recycling the ASIC or by system reset.

Defined in: ZW_power_api.h

Parameters:
flags IN The value of the flag input parameter is
one or both of the following defines:
ZW_PWR_MAIN_CLK The system clock
ZW_PWR_32K_CLK The 32 kHz clock
Serial API

HOST->ZW: REQ | 0xB1 | flags

5.3.9.3 PWR_CIk_Pup (ZW0102 only)
|

void PWR_CIk_PUp (BYTE flags)
Macro: ZW_PWR_CLK_POWERUP(FLAGS)
PWR_CIk_PUp Power up the clock oscillators specified in the flags parameter.

Defined in: ZW_power_api.h

Parameters:
flags IN The value of the flag input parameter is
one or both of the following defines:
ZW_PWR_MAIN_CLK The system clock
ZW_PWR_32K_CLK The 32 kHz clock
Serial API

HOST->ZW: REQ | 0xB2 | flags

Zensys A/S Z-Wave Application Interfaces Page 131 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.9.4 PWR_Select_Clk (ZW0102 only)
|

void PWR_Select_Clk (BYTE clock)
Macro: ZW_PWR_SELECT_CLK(CLOCK)
PWR_Select_Clk Select the clock that the ASIC will run on.

Note: Selecting a 32 kHz clock, as the system clock will cause the system timer to not function properly.
Also RF will always run on the main clock regardless of the clock source for the ASIC.

Defined in: ZW_power_api.h

Parameters:
clock IN Clock option flags:
ZW_SELECT_MAIN_CLK The primary clock (7.376974MHz)
ZW_SELECT_32K_CLK_INT The real time clock (32.768kHz) using an
external crystal in combination with an
internal oscillator.
ZW_SELECT_32K_CLK_EXT The real time clock (32.768kHz) using an
external clock signal.
Serial API

HOST->ZW: REQ | 0xB3 | clock

5.3.9.5 ZW_SetWutTimeout (ZW0201/2ZW0301 only)
__|

void ZW_SetWutTimeout (BYTE wutTimeout)

Macro: ZW_SET_WUT_TIMEOUT(TIME)

ZW_SetWutTimeout Set the Time out value of the wake up timer before going in WUT mode.
Defined in: ZW_power_api.h
Parameters:

wutTimeout IN The Wake UP Timer timeout value in
seconds. 0 = 1 sec.:

Serial API

HOST->ZW: REQ | 0xB4 | wutTimeout

Zensys A/S Z-Wave Application Interfaces Page 132 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.9.6 ZW_IsWutKicked (ZW0201/ZW0301 only)
|

BOOL ZW_IsWutKicked (void)
Macro: ZW_IS_WUT_KICKED()

Use this function after ASIC wake up from WUT mode to test if it was waked by the WUT time out,
external interrupt or hardware reset.

Defined in: ZW_power_api.h

Return value:

BOOL TRUE If the ASIC was waked by the WUT
timeout.
FALSE If the ASIC was reset by hardware reset

or by external interrupt 1.
Serial API

HOST->ZW: REQ | 0xB5
ZW->HOST: REQ | 0xB5 | wutKickedStatus

5.3.10 UART interface API
The serial interface API handles transfer of data via the serial interface (UART — RS232). This serial API

support transmissions of either a single byte, or a data buffer. The received characters are read by the
application one-by-one.

5.3.10.1 UART_Init
__|

void UART _Init(WORD baudRate)

Macro: ZW_UART_INIT(baud)

Initializes the MCU's integrated UART.

Enables UART transmit and receive, selects 8 data bits and sets the specified baud rate.
Defined in: ZW_uart_api.h
Parameters:

baudRate IN Baud Rate / 100 ZW0201 support only 9600, 38400 and
115200 baud.

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 133 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.10.2 UART_RecStatus
|

BYTE UART_RecStatus(void)
Macro: ZW_UART_REC_STATUS
Read the UART receive data status
Defined in: ZW __uart_api.h
Return value:
BYTE TRUE If data received.

Serial API (Not supported)

5.3.10.3 UART_RecByte
__|

BYTE UART_RecByte(void)

Macro: ZW_UART_REC_BYTE

Function receives a byte over the UART.

This function waits until data received. See also: UART_Read
Defined in: ZW _uart_api.h
Return value:
BYTE Received data.

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 134 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.10.4 UART_SendStatus
|

BYTE UART_SendStatus(void)
Macro: ZW_UART_SEND_STATUS
Read the UART send data status.
Defined in: ZW __uart_api.h
Return value:
BYTE TRUE If transmitter busy

Serial API (Not supported)

5.3.10.5 UART_SendByte
__|

void UART_SendByte(BYTE data)
Macro: ZW_UART_SEND_BYTE(data)
Function transmits a byte over the UART.

This function waits to transmit data until data register is free.

Defined in: ZW _uart_api.h
Parameters:
data IN Data to send.

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 135 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.10.6 UART_SendNum
|

void UART_SendNum(BYTE data)

Macro: ZW_UART_SEND_NUM(data)

Converts a byte to a two-byte hexadecimal ASCII representation, and transmits it over the UART.
Defined in: ZW __uart_api.h
Parameters:
data IN Data to convert and send.

Serial API (Not supported)

5.3.10.7 UART_SendStr
__|

void UART_SendStr(BYTE *str)

Macro: ZW_UART_SEND_STRING(str)

Transmit a null terminated string over the UART. The null data is not transmitted.
Defined in: ZW_uart_api.h
Parameters:
strIN String pointer.

Serial API (Not supported)

5.3.10.8 UART_SendNL
__|

void UART_SendNL(void)

Macro: ZW_UART_SEND_ NL

Transmit “new line” sequence (CR + LF) over the UART.
Defined in: ZW __uart_api.h

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 136 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.10.9 UART_Enable (ZW0201/ZW0301 only)
|

void UART_Enable(void)

Macro: ZW_UART_ENABLE

Enable the UART and take control of the I/Os that are shared with the ADC.
Defined in: ZW __uart_api.h

Serial API (Not supported)

5.3.10.10 UART_Disable (ZW0201/ZW0301 only)
__|

void UART_Disable(void)

Macro: ZW_UART_DISABLE

Disable the UART and release the I/Os that are shared with the ADC.
Defined in: ZW_uart_api.h

Serial API (Not supported)

5.3.10.11 UART_ClearTx (ZW0201/ZW0301 only)
|

void UART_ClearTx(void)

Macro: ZW_UART_CLEAR_TX

Clear the UART transmit done flag.
Defined in: ZW _uart_api.h

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 137 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.10.12UART_ClearRx (ZW0201/2ZW0301 only)
|

void UART_ClearRx(void)

Macro: ZW_UART_CLEAR_RX

Clear the UART receiver ready flag.
Defined in: ZW __uart_api.h

Serial API (Not supported)

5.3.10.13UART_Write (ZW0201/ZW0301 only)
__|

void UART_Write(BYTE txByte)
Macro: ZW_UART_WRITE(TXBYTE)
Function writes a byte to the UART transmit register. UART_Write makes an immediate write to the
UART without checking the SEND_STATUS register. Function returns immediately.
See also: UART_SendByte
Defined in: ZW_uart_api.h
Parameters:

txByte IN Data to send.

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 138 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.10.14 UART_Read (ZW0201/ZW0301 only)
|

BYTE UART_Read(void)
Macro: ZW_UART_READ
Function reads a byte from the UART receive register. UART_Read makes an immediate read and
returns without first checking the receive data status. Function returns immediately.
See also: UART_RecByte
Defined in: ZW __uart_api.h

Return value:

BYTE The contents of the UART receive
register.

Serial API (Not supported)

5.3.10.15 Serial debug output.
The serial application interface includes a few macros that can be used for debugging the application
software. Defining the “ZW_DEBUG” compile flag enables the following macros. If the “ZW_DEBUG” flag

is not defined, the serial interface will not be initialized, and no debug information will be showed on the
debug terminal.

5.3.10.15.1 ZW_DEBUG_INIT(baud)
|

This macro initializes the serial interface. The macro can be placed within the application initialization
function (see function ApplicationInitSW).
Example:
ZW_DEBUG_INIT(96); /* setup debug output speed to 9600 bps. */
Defined in: ZW __uart_api.h

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 139 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.10.15.2 ZW_DEBUG_SEND_BYTE(data)
|

This macro sends one byte via the serial interface. The macro can be placed anywhere in the application
programs (non interrupt functions).
Example:
ZW_DEBUG_SEND_BYTE('Z’); /* show “Z” on the debug terminal */
Defined in: ZW _uart_api.h

Serial API (Not supported)

5.3.10.15.3 ZW_DEBUG_SEND_NUM(data)
L __|]
Example:

ZW_DEBUG_SEND_NUM(count); /* show the current value (hexadecimal) of */
/* the local variable “count” on the debug terminal */

Defined in: ZW __uart_api.h

Serial API (Not supported)

5.3.11 Z-Wave Real Time Clock API (ZW0102 only)

The Application software can use the following Real Time Clock (RTC) functions to do different actions at
user specified times. The RTC is a 7 days/24 hours clock having a time base of one minute.

Note: The RTC API is only available on the Enhanced Rourting Slave, Portable Controller, Installer
Controller and Static Controller libraries based on the ZW0102 Single Chip.

The RTC API uses the ZW010x built-in RTC timer to generate an interrupt every minute. The interrupt
will wakeup the CPU if in sleep mode. The interrupt function sets a signal each minute, and the list of
RTC timers will be checked against the current time.

At system startup the RTC is initiated to 1.00:00 (monday after midnight).

Time is specified by the following structure:

typedef struct _CLOCK_ {
BYTE weekday; /* Weekday l1l:monday...7:sunday */

BYTE hour; /* Hour 0...23 */
BYTE minute; /* Minute 0...59 */
} CLOCK;

The weekday is defined as follow:

RTC_MONDAY
RTC_TUESDAY
RTC_WEDNESDAY
RTC_THURSDAY

Zensys A/S Z-Wave Application Interfaces Page 140 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

RTC_FRIDAY

RTC_SATURDAY

RTC_SUNDAY

RTC_WORKDAYS Monday..Friday
RTC_WEEKEND Saturday, Sunday
RTC_ALLDAYS Monday..Sunday

A RTC timer element is specified by the following structure:

typedef struct _RTC_TIMER_ {

BYTE status; /* Timer element status */
CLOCK timeOn; /* Weekday, all days, work days or weekend callback time */
CLOCK timeOff; /* , Hour callback time */

/* , Minute callback time */

BYTE repeats; /* Number of callback times.
Predefined values:
RTC_TIMER_ONE_TIME
RTC_TIMER_FOREVER (OxFF) */
VOID_CALLBACKFUNC(func)(BYTE status, BYTE parm); /* Timer function address */
BYTE parm; /* Parameter that is returned to the timer function */
} RTC_TIMER;

RTC timer callback function parameters (func)

status Bit 0-3 is specified by the Application when creating the timer.
RTC_STATUS_FIRED is set when “On” time, and not set when “Off” time.
parm Specified by application when creating the timer

5.3.11.1 ClockSet
|

BYTE ClockSet(CLOCK *pNewTime)
Macro: ZW_CLOCK_SET(pNewTime)
ClockSet write the specified time to the current Real Time Clock. The specified time is validated before
setting the Real Time Clock. For making the first minute as accurate as possible the node must not go
into sleep mode before a full minute has past the ClockSet call.

Defined in: ZW _rtc_api.h

Return value:

BYTE FALSE if invalid time value

Parameters:

pNewTime IN New time value to set.

Serial API:

HOST->ZW: REQ | 0x30 | pNewTime[](3 bytes) = weekday,hour,minute

ZW->HOST: RES | 0x30 | RetVal

Zensys A/S Z-Wave Application Interfaces Page 141 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.11.2 ClockGet
|

void ClockGet(CLOCK *pTime)
Macro: ZW_CLOCK_GET(pTime)
Copy the current Real Time Clock time to the specified time buffer.
Defined in: ZW _rtc_api.h
Parameters:
pTime OUT Pointer to a time memory buffer.
Serial API:
HOST->ZW: REQ | 0x31

ZW->HOST: RES | 0x31 | pTime[] (3bytes) = weekday,hour,minute

5.3.11.3 ClockCmp
|

Char ClockCmp(CLOCK *pTime)

Macro: ZW_CLOCK_CMP(pTime)

ClockCmp is used to compare a specified time against the current Real Time Clock time.
Defined in: ZW _rtc_api.h

Return value:

Char 1 Specified time is before current time.
0 Specified time is equal current time.
-1 Specified time is past current time.

Parameters:

pTime IN Pointer to a time memory buffer.

Serial API:

HOST->ZW: REQ | 0x32 | pTime[] (3bytes) = weekday,hour,minute

ZW->HOST: RES | 0x32 | char (1 byte)

Zensys A/S Z-Wave Application Interfaces Page 142 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.11.4 RTCTimerCreate
|

BYTE RTCTimerCreate(RTC_TIMER *timer, VOID_CALLBACKFUNC(func)(void))

Macro: ZW_RTC_CREATE(timer, func)

RTCTimerCreate creates a new timer element.

RTCTimerCreate's callback function is called when the RTC system completed the timer element
creation. The RTC timer element callback function defined in the beginning of this paragraph is called at
the specified “On” and “Expire” time events. The RTC timer is running during sleep mode and the timer

callback function will be called again (“On” time) in case the device wakeup from sleep mode.

The timer element is kept in the EEPROM so that it would not be lost if the system is reset. The timer
element data buffer can be reused when the completion function (func) is called.

Defined in: ZW_rtc_api.h

Return value:

BYTE RTC timer handle (OxFF if failed)
Parameters:

timer IN Pointer to the new timer structure
func IN Timer element read buffer completed

function pointer.
Serial API:

HOST->ZW: REQ | 0x33 | RTC_TIMER:.status | RTC_TIMER.timeOn (3 bytes) | RTC_TIMER.timeOff
(3 bytes) | RTC_TIMER.repeats | RTC_TIMER.parm | RTC_TIMER.funcID | funcID

ZW->HOST: RES | 0x33 | RetVal
ZW->HOST: REQ | 0x33 | funclD
When the Timer callback function is called

ZW->HOST: REQ | 0x36 | RTC_TIMER funcID | status | parm

Zensys A/S Z-Wave Application Interfaces Page 143 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.11.5 RTCTimerRead
|

BYTE RTCTimerRead(BYTE *timerHandle, RTC_TIMER *timer)
Macro: ZW_RTC_READ(handle, timer)

Search in the RTC list and if a used element found, copy the timer element from the RTC timer list to the
specified memory buffer.

Defined in: ZW _rtc_api.h
Return value:
BYTE Next RTC timer handle in the list. OXFF if

no timer copied to memory buffer (end of
list).

Parameters:
timerHandle Timer handle pointer, handle value to
IN/OUT start search from in the timer list.
The returned handle value is the found
timer handle (“Return value” not equal
OxFF).
timer IN Pointer to RTC timer memory buffer.
Serial API:

HOST->ZW: REQ | 0x34 | timerHandle

ZW->HOST: RES | 0x34 | RetVal | timerHandle | RTC_TIMER.status | RTC_TIMER.timeOn (3 bytes) |
RTC_TIMER.timeOff (3 bytes) | RTC_TIMER.repeats | RTC_TIMER.parm

Zensys A/S Z-Wave Application Interfaces Page 144 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.11.6 RTCTimerDelete

L __|]
void RTCTimerDelete(BYTE timerHandle)
Macro: ZW_RTC_DELETE(handle)
RTCTimerDelete remove the specified timer element from the RTC timer list.
Defined in: ZW _rtc_api.h
Parameters:
timerHandle IN Timer element to remove
Serial API:

HOST->ZW: REQ | 0x35 | timerhandle

Zensys A/S Z-Wave Application Interfaces Page 145 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.12 Z-Wave Node Mask API

The Node Mask API contains a set of functions to manipulate bit masks. This API is not necessary when
writing a Z-Wave application, but is provided as an easy way to work with node ID lists as bit masks.

5.3.12.1 ZW_NodeMaskSetBit
|

void ZW_NodeMaskSetBit(BYTE_P pMask, BYTE bNodelD)
Macro: ZW_NODE_MASK_SET_BIT(pMask, bNodelD)
Set the node bit in a node bit mask.

Defined in: ZW_nodemask_api.h

Parameters:
pMask IN Pointer to node mask
bnodelD IN Node id (1..232) to set in node mask

Serial API (Not supported)

5.3.12.2 ZW_NodeMaskClearBit
|

void ZW_NodeMaskClearBit(BYTE_P pMask, BYTE bNodelD)
Macro: ZW_NODE_MASK_CLEAR_BIT(pMask, bNodelD)
Clear the node bit in a node bit mask.

Defined in: ZW_nodemask_api.h

Parameters:
PMask IN Pointer to node mask
bNodelD IN Node ID (1..232) to clear in node

mask

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 146 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.12.3 ZW_NodeMaskClear
|

void ZW_NodeMaskClear(BYTE_P pMask, BYTE bLength)
Macro: ZW_NODE_MASK_CLEAR(pMask, bLength)
Clear all bits in a node mask.

Defined in: ZW_nodemask_api.h

Parameters:
pMask IN Pointer to node mask
bLength IN Length of node mask

Serial API (Not supported)

5.3.12.4 ZW_NodeMaskBitsIn
|

BYTE ZW_NodeMaskBitsIn(BYTE_P pMask, BYTE bLength)
Macro: ZW_NODE_MASK_BITS_IN (pMask, bLength)
Number of bits set in node mask.

Defined in: ZW_nodemask_api.h

Return value:

BYTE Number of bits set in node mask
Parameters:

pMask IN Pointer to node mask
bLength IN Length of node mask

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 147 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.3.12.5 ZW_NodeMaskNodeln

BYTE ZW_NodeMaskNodeln (BYTE_P pMask, BYTE bNode)

Macro: ZW_NODE_MASK_NODE_IN (pMask, bNode)
Check if a node is in a node mask.
Defined in: ZW_nodemask_api.h

Return value:

BYTE ZERO
NONEZERO
Parameters:
pMask IN Pointer to node mask
bNode IN Node to clear in node mask

Serial API (Not supported)

If not in node mask

If in node mask

Zensys A/S Z-Wave Application Interfaces

Page 148 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4 Z-Wave Controller API

The Z-Wave Controller APl makes it possible for different controllers to control the Z-Wave nodes and
get information about each node’s capabilities and current state. The node control commands can be
sent to a single node, all nodes or to a list of nodes (group, scene...).

54.1 ZW_AddNodeToNetwork
|

void ZW_AddNodeToNetwork(BYTE mode,
VOID_CALLBACKFUNC(completedFunc)(LEARN_INFO *learnNodelnfo))

Macro: ZW_ADD_NODE_TO_NETWORK(mode, func)
ZW_AddNodeToNetwork is used to add any nodes to the Z-Wave network.

The process of adding a node is started by calling ZW_AddNodeToNetwork() with the mode set to
ADD_NODE_ANY, ADD_NODE_SLAVE or ADD_NODE_CONTROLLER. When the learn process is
started the caller will get a number of status messages through the callback function completedFunc.

ADD_NODE_EXISTING is used when you don’t want to learn new nodes but only get node info from
nodes that are already known in the system.

Normally low power transmission mode is used during node inclusion. The option
ADD_NODE_OPTION_HIGH_POWER can be added to the bMode parameter for High Power inclusion.

The callback function will be called multiple times during the learn process to report the progress of the
learn to the application. The LEARN_INFO will only contain a valid pointer to the node information frame
from the new node when the status of the callback is ADD_NODE_STATUS_ADDING_SLAVE or

ADD _NODE_STATUS_ADDING_CONTROLLER.

WARNING: Itis not allowed to call ZW_AddNodeToNetwork() between a
ADD_NODE_STATUS_ADDING_* and a ADD_NODE_STATUS_PROTOCOL_DONE callback status,
doing this can result in malfunction of the protocol.

NOTE: The learn state should ALWAYS be disabled after use to avoid adding other nodes than
expected. It is recommended that ZW_AddNodeToNetwork() is called with ADD_NODE_STOP every
time a ADD_NODE_STATUS_ DONE callback is received, and that the controller also contains a timer
that disables the learn state.

Defined in: ZW__controller_api.h
Parameters:
mode IN The learn node states are:
ADD_NODE_ANY Add any type of node to the
network
ADD_NODE_SLAVE Only add slave nodes to the
network
ADD_NODE_CONTROLLER Only add controller nodes to the
network
Zensys A/S Z-Wave Application Interfaces Page 149 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

completedFunc

ADD_NODE_EXISTING

ADD_NODE_STOP

ADD_NODE_STOP_FAILED
ADD_NODE_OPTION_HIGH_POWER

IN Callback function pointer (Should
only be NULL if state is turned off).

Callback function Parameters (completedFunc):

*learnNodelnfo.bStatus

*learnNodelnfo.bSource
*learnNodelnfo.pCmd

*learnNodelnfo.bLen

Serial API:

IN Status of learn mode:

ADD_NODE_STATUS_LEARN_READY

ADD_NODE_STATUS_NODE_FOUND

ADD_NODE_STATUS_ADDING_SLAVE

ADD_NODE_STATUS_ADDING_CONTROLLER

ADD_NODE_STATUS_PROTOCOL_DONE

ADD_NODE_STATUS_DONE

ADD NODE_STATUS_FAILED
IN Node id of the new node

Only get node info from nodes that

are already included in the
network

Stop adding nodes to the network
Report a failure in the application

part of the learn process

Set this flag also in bMode for

High Power inclusion

2007-03-20

The controller is now
ready to include a node
into the network.

A node that wants to be
included into the network
has been found

A new slave node has
been added to the
network

A new controller has
been added to the
network

The protocol part of
adding a controller is
complete, the application
can now send data to the
new controller using
ZW_ReplicationSend()
The new node has now
been included and the
controller is ready to
continue normal
operation again.

The learn process failed

IN Pointer to Application Node information data
(see ApplicationNodelnformation - nodeParm).

NULL if no information present.

The pCmd only contain information when bLen is
not zero, so the information should be stored
when that is the case. Regardless of the bStatus.

IN Node info length.

HOST->ZW: REQ | 0x4A | mode | funcID

ZW->HOST: REQ | 0x4A | funcID | bStatus | bSource | bLen | basic | generic | specific | cmdclasses|]

Zensys A/S

Z-Wave Application Interfaces

CONFIDENTIAL

Page 150 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.2 ZW_RemoveNodeFromNetwork
|

void ZW_RemoveNodeFromNetwork(BYTE mode,
VOID_CALLBACKFUNC(completedFunc)(LEARN_INFO *learnNodelnfo))

Macro: ZW_REMOVE_NODE_FROM_NETWORK(mode, func)
ZW_RemoveNodeFromNetwork is used to remove any node from the Z-Wave network.

The process of removing a node is started by calling ZW_RemoveNodeFromNetwork() with the mode set
to REMOVE_NODE_ANY, REMOVE_NODE_SLAVE or REMOVE_NODE_CONTROLLER. When the
delete process is started the caller will get a number of status messages through the callback function
completedFunc.

The callback function will be called multiple times during the delete process to report the progress to the
application. The LEARN_INFO will only contain a valid pointer to the node information frame from the
node that is deleted when the status of the callback is REMOVE_NODE_STATUS_REMOVING_SLAVE
or REMOVE_NODE_STATUS_REMOVING_CONTROLLER.

The delete process is complete when the callback function is called with the status
REMOVE_NODE_STATUS_DONE.

WARNING: It is not allowed to call ZW_RemoveNodeFromNetwork() between a
REMOVE_NODE_STATUS_REMOVING_* and a REMOVE_NODE_STATUS_DONE callback status,
doing this can result in malfunction of the protocol.

NOTE: The learn state should ALWAYS be disabled after use to avoid adding other nodes than
expected. It is recommended that ZW_RemoveNodeFromNetwork() is called with
REMOVE_NODE_STOP every time a REMOVE_NODE_STATUS_DONE callback is received, and that
the controller also contains a timer that disables the learn state.

Defined in: Z\W_controller_api.h

Parameters:
mode IN The learn node states are:
REMOVE_NODE_ANY Remove any type of node from the
network
REMOVE_NODE_SLAVE Only remove slave nodes from the
network
REMOVE_NODE_CONTROLLER Only remove controller nodes from
the network
REMOVE_NODE_STOP Stop the delete process
completedFunc IN Callback function pointer (Should only

be NULL if remove is turned off).

Callback function Parameters (completedFunc):

*learnNodelnfo.bStatus Status of learn mode:

Zensys A/S Z-Wave Application Interfaces Page 151 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

IN

*learnNodelnfo.bSource
IN

*learnNodelnfo.pCmd
IN

*learnNodelnfo.bLen IN

Serial API:

REMOVE_NODE_STATUS_LEARN_READY The controller is now ready

REMOVE_NODE_STATUS_NODE_FOUND

REMOVE_NODE_STATUS_REMOVING_*

REMOVE_NODE_STATUS_DONE

REMOVE_NODE_STATUS_FAILED

Node id of the removed node

Pointer to Application Node information data
(see ApplicationNodelnformation -
nodeParm). NULL if no information present.

The pCmd only contain information when
bLen is not zero, so the information should
be stored when that is the case. Regardless

of the bStatus.

Node info length.

HOST->ZW: REQ | 0x4B | mode | funclD

to remove a node from the
network.

A node that wants to be
deleted from the network has
been found

A slave/controller node has
been removed from the
network. Remove node ID is
returned.

The node has now been
removed and the controller is
ready to continue normal
operation again.

The remove process failed

ZW->HOST: REQ | 0x4B | funcID | bStatus | bSource | bLen | basic | generic | specific | cmdclasses]]

Zensys A/S

Z-Wave Application Interfaces

CONFIDENTIAL

Page 152 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.3 ZW_ControllerChange
|

void ZW_ControllerChange (BYTE mode,
VOID_CALLBACKFUNC(completedFunc)(LEARN_INFO *learnNodelnfo))

Macro: ZW_CONTROLLER_CHANGE(mode, func)

ZW_ControllerChange is used to add a controller to the Z-Wave network and transfer the role as
primary controller to it.

This function has the same functionality as ZW_AddNodeToNetwork(ADD_NODE_ANY,...) except that
the new controller will be a primary controller and the controller invoking the function will become
secondary.

Defined in: Z\W_controller_api.h

Parameters:
mode IN The learn node states are:
CONTROLLER _CHANGE_START Start the process of adding a
controller to the network.
CONTROLLER_CHANGE_STOP Stop the controller change
CONTROLLER_CHANGE_STOP_FAILED Stop the controller change and
report a failure
completedFunc IN Callback function pointer (Should only be
NULL if state is turned off).
Zensys A/S Z-Wave Application Interfaces Page 153 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

Callback function Parameters (completedFunc):

*learnNodelnfo.bStatus
IN

*learnNodelnfo.bSource
IN

*learnNodelnfo.pCmd
IN

*learnNodelnfo.bLen IN
Serial API:

Status of learn mode:

ADD_NODE_STATUS_LEARN_READY

ADD_NODE_STATUS_NODE_FOUND

ADD_NODE_STATUS_ADDING_CONTROLLER

ADD_NODE_STATUS_PROTOCOL_DONE

ADD_NODE_STATUS_DONE

ADD_NODE_STATUS_FAILED

Node id of the new node

Pointer to Application Node information data (see
ApplicationNodelnformation - nodeParm).
NULL if no information present.

The pCmd only contain information when bLen is
not zero, so the information should be stored
when that is the case. Regardless of the bStatus.

Node info length.

HOST->ZW: REQ | 0x4D | mode | funcID

The controller is now
ready to include a node
into the network.

A node that wants to be
included into the network
has been found

A new controller has
been added to the
network

The protocol part of
adding a controller is
complete, the application
can now send data to the
new controller using

ZW _ReplicationSend()

The new node has now
been included and the
controller is ready to
continue normal
operation again.

The learn process failed

ZW->HOST: REQ | 0x4D | funclID | bStatus | bSource | bLen | basic | generic | specific | cmdclasses|]

Zensys A/S

Z-Wave Application Interfaces

CONFIDENTIAL

Page 154 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.4 ZW_SetLearnMode
|

void ZW_SetLearnMode (BOOL mode,
VOID_CALLBACKFUNC(completedFunc)(LEARN_INFO *learnNodelnfo))

Macro: ZW_SET_LEARN_MODE(mode, func)
ZW_SetLearnMode is used to add or remove the controller to a Z-Wave network.
This function is used to instruct the controller to allow it to be added or removed from the network.

When a controller is added to the network the following things will happen:

1. The controller is assigned a valid Home ID and Node ID

2. The controller receives and stores the node table and routing table for the network

3. The application receives and stores application information transmitted as part of the
replication

This function will probably change the capabilities of the controller so it is recommended that the
application calls ZW_GetControllerCapabilities() after completion to check the controller status.

NOTE: Learn mode should only be enabled when necessary, and it should always be disabled again as
quickly as possible. However to ensure a successful synchronization of the inclusion process the device
should be able to stay in learn mode in up to 5 seconds.

WARNING: The learn process should not be stopped with ZW_SetlLearnMode(FALSE,..) between the
LEARN_MODE_STARTED and the LEARN_MODE_DONE status callback.

Defined in: ZW__controller_api.h

Parameters:
mode IN The learn node states are:
TRUE Start the learn mode on the
controller
FALSE Stop learn mode on the
controller
completedFunc IN Callback function pointer (Should only be
NULL if state is turned off).
Zensys A/S Z-Wave Application Interfaces Page 155 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Callback function Parameters (completedFunc):

*learnNodelnfo.bStatus Status of learn mode:
IN

LEARN_MODE_STARTED The learn process has
been started

LEARN_MODE_DONE The learn process is
complete and the
controller is now included
into the network

LEARN_MODE_FAILED The learn process failed.

*learnNodelnfo.bSource Node id of the new node
IN

*learnNodelnfo.pCmd Pointer to Application Node information data

IN (see ApplicationNodelnformation -
nodeParm). NULL if no information present.
The pCmd only contain information when bLen is
not zero, so the information should be stored
when that is the case. Regardless of the
bStatus.

*learnNodelnfo.bLen IN Node info length.

Serial API:

HOST->ZW: REQ | 0x50 | mode | funcID

ZW->HOST: REQ | 0x50 | funclID | bStatus | bSource | bLen | pCmd[]

Zensys A/S Z-Wave Application Interfaces Page 156 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.45 ZW_GetControllerCapabilities

BYTE ZW_GetControllerCapabilities (void)

Macro: ZW_GET_CONTROLLER_CAPABILITIES()

ZW_GetControllerCapabilities returns a bitmask containing the capabilities of the controller. It's an old

type of primary controller (node ID = OxEF) in case zero is returned.

NOTE: Not all status bits are available on all controllers types
Defined in: ZW_controller_api.h
Return value:

BYTE CONTROLLER_IS_SECONDARY

CONTROLLER_ON_OTHER_NETWORK

CONTROLLER_IS_SUC

CONTROLLER_NODEID_SERVER_PRESENT

CONTROLLER_IS_REAL_PRIMARY

Serial API:
HOST->ZW: REQ | 0x05

ZW->HOST: RES | 0x05 | RetVal

If bit is set then the controller is a
secondary controller

If this bit is set then this controller
is not using its build in home ID

If this bit is set then this controller
isa SUC

If this bit is set then there is a
SUC ID server (SIS) in the
network and this controller can
therefore include/exclude nodes
in the network. This is called an
inclusion controller.

If this bit is set then this controller
was the original primary controller
in the network before the SIS was
added to the network

Zensys A/S Z-Wave Application Interfaces

CONFIDENTIAL

Page 157 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.6 ZW_GetNodeProtocolinfo

void ZW_GetNodeProtocolinfo(BYTE bNodelD,
NODEINFO, *nodelnfo)

Macro: ZW_GET_NODE_STATE(nodelD, nodelnfo)

Return the Node Information frame without command classes from the EEPROM memory:

Byte descriptor \ bit number 7 6 5 4 3 2 1 0
Capability Lr:isrgz_ Z-Wave Protocol Specific Part
Security Opt. Z-Wave Protocol Specific Part
Func.
Reserved Z-Wave Protocol Specific Part
Basic Basic Device Class (Z-Wave Protocol Specific Part)
Generic Generic Device Class (Z-Wave Appl. Specific Part)
Specific Specific Device Class (Z-Wave Appl. Specific Part)

Figure 8 Node Information frame without command classes format

All the Z-Wave protocol specific fields are initialised by the protocol. The Listening flag, Generic and
Specific Device Class fields are initialized by the application. Regarding initialisation refer to the function

ApplicationNodelnformation.

Defined in: ZW_controller_api.h

Parameters:

bNodelD IN Node ID

nodelnfo OUT Node info buffer (see Figure 8)
Serial API:

HOST->ZW: REQ | 0x41 | bNodelD

ZW->HOST: RES | 0x41 | nodelnfo (see Figure 8)

1..232

If (*nodelnfo).nodeType.generic is
0 then the node doesn’t exist.

Zensys A/S Z-Wave Application Interfaces

CONFIDENTIAL

Page 158 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.7 ZW_SetDefault
|

void ZW_SetDefault(VOID_CALLBACKFUNC(completedFunc)(void))
Macro: ZW_SET_DEFAULT (func)

Remove all Nodes, routing information, assigned homelD/nodelD and RTC timers from the EEPROM
memory. This function set the Controller back to the factory default state.

NOTE: This function should not be used on a secondary controller, use ZW_SetlLearnMode() instead
and use the primary controller to remove it from the network.

Warning: This function should be used with care as it could render a Z-Wave network unusable if the
primary controller in an existing network is set back to default.

Defined in: ZW__controller_api.h

Parameters:

completedFunc IN Command completed call back function
Serial API:

HOST->ZW: REQ | 0x42 | funcID

ZW->HOST: REQ | 0x42 | funcID

Zensys A/S Z-Wave Application Interfaces Page 159 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.8 ZW_ReplicationSend
|

BYTE ZW_ReplicationSend(BYTE destNodelD, BYTE *pData, BYTE datalLength,
BYTE txOptions,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))

Macro: ZW_REPLICATION_SEND_DATA(node,data,length,options,func)

Used when the controller is in replication mode. It sends the payload and expects the receiver to respond
with a command complete message (ZW_REPLICATION_COMMAND_COMPLETE).

Messages sent using this command should always be part of the Z-Wave controller replication command
class.

Defined in: ZW__controller_api.h

Return value:

BYTE FALSE If transmit queue overflow.
Parameters:
destNode IN Destination Node ID

(not equal NODE_BROADCAST).
pData IN Data buffer pointer
dataLength IN Data buffer length
txOptions IN Transmit option flags. (see
ZW_SendData, but avoid using

routing!)

completedFunc Transmit completed call back function
IN

Callback function Parameters:

txStatus IN (see ZW_SendData)

Serial API:

HOST->ZW: REQ | 0x45 | destNodelD | dataLength | pData[] | txOptions | funcID
ZW->HOST: RES | 0x45 | RetVal

ZW->HOST: REQ | 0x45 | funcID | txStatus

Zensys A/S Z-Wave Application Interfaces Page 160 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.9 ZW_ReplicationReceiveComplete
|

void ZW_ReplicationReceiveComplete(void)
Macro: ZW_REPLICATION_COMMAND_COMPLETE

Sends command completed to sending controller. Called in replication mode when a command from the
sender has been processed and indicates that the controller is ready for next packet.

Defined in: ZW_controller_api.h
Serial API:

HOST->ZW: REQ | 0x44

Zensys A/S Z-Wave Application Interfaces Page 161 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.10 ZW_AssignReturnRoute
|

BOOL ZW_AssignReturnRoute(BYTE bSrcNodelD,
BYTE bDstNodelD,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))
Macro: ZW_ASSIGN_RETURN_ROUTE(routingNodelD,destNodelD,func)
Use to assign static return routes (up to 4) to a Routing Slave node or Enhanced Slave node. This allows
the Routing Slave node to communicate directly with either controllers or other slave nodes. The API call
calculates the shortest routes from the Routing Slave node (bSrcNodelD) to the destination node
(bDestNodelD) and transmits the return routes to the Routing Slave node (bSrcNodelD). The destination
node is part of the return routes assigned to the slave. Up to 5 different destinations can be allocated
return routes. Attempts to assign new return routes when all 5 destinations already are allocated will be
ignored. Allocated destinations can only be cleared by the API call ZW_DeleteReturnRoute. The Routing
Slave or Enhanced Slave can call ZW_RediscoveryNeeded in case it detects that none of the return
routes are usefull anymore.
Defined in: Z\W_controller_api.h
Return value:
BOOL TRUE If Assign return route operation started

FALSE If an “assign/delete return route” operation
already is active.

Parameters:

bSrcNodelD IN Node ID (1...232) of the routing slave
that should get the return routes.

bDstNodelD IN Destination node ID (1...232)

completedFunc Transmit completed call back function
IN

Callback function Parameters:

txStatus IN (see ZW_SendData)

Serial API:

HOST->ZW: REQ | 0x46 | bSrcNodelD | bDstNodelD | funclD
ZW->HOST: RES | 0x46 | retVal

ZW->HOST: REQ | 0x46 | funcID | bStatus

Zensys A/S Z-Wave Application Interfaces Page 162 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

5.4.11 ZW_DeleteReturnRoute

BOOL ZW_DeleteReturnRoute(BYTE nodelD,

VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))

Macro: ZW_DELETE_RETURN_ROUTE(nodelD, func)

Delete all static return routes from a Routing Slave node or Enhanced Slave node.

Defined in: ZW__controller_api.h

Return value:

BOOL TRUE
FALSE
Parameters:
nodelD IN Node ID (1...232) of the routing slave

node.

completedFunc
IN

Transmit completed call back function

Callback function Parameters:
txStatus IN (see ZW_SendData)
Serial API:

HOST->ZW: REQ | 0x47 | nodelD | funclD
ZW->HOST: RES | 0x47 | retVal

ZW->HOST: REQ | 0x47 | funcID | bStatus

If Delete return route operation started

If an “assign/delete return route” operation
already is active.

Zensys A/S

Z-Wave Application Interfaces

Page 163 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.12 ZW_RemoveFailedNodelD
|

BYTE ZW_RemoveFailedNodelD(BYTE NodelD,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))

Macro: ZW_REMOVE_FAILED_NODE_ID(node,func)

Used to remove a non-responding node from the routing table in the requesting controller. A non-
responding node is put onto the failed node ID list in the requesting controller. In case the node responds
again at a later stage then it is removed from the failed node ID list. A node must be on the failed node ID

list and as an extra precaution also fail to respond before it is removed. Responding nodes can'’t be
removed. The call works on a primary controller and an inclusion controller.

A call back function should be provided otherwise the function will return without removing the node.
Defined in: Z\W_controller_api.h

Return value (If the replacing process started successfully then the function will return):

BYTE ZW_FAILED_NODE_REMOVE_STARTED The removing process started

Return values (If the replacing process cannot be started then the API function will return one or more
of the following flags):

BYTE ZW_NOT_PRIMARY_CONTROLLER The removing process was aborted
because the controller is not the
primary one.

ZW _NO_CALLBACK_FUNCTION The removing process was aborted
because no call back function is
used.

ZW_FAILED_NODE_NOT_FOUND The removing process aborted
because the node was node found.

ZW_FAILED_NODE_REMOVE_PROCESS_BUSY The removing process is busy.

ZW_FAILED_NODE_REMOVE_FAIL The removing process could not be
started because of transmitter
busy.

Parameters:
nodelD IN The node ID (1..232) of the failed node

to be deleted.

completedFunc Remove process completed call back
IN function

Zensys A/S Z-Wave Application Interfaces Page 164 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Callback function Parameters:
txStatus IN Status of removal of failed node:

ZW_NODE_OK

ZW_FAILED_NODE_REMOVED

ZW_FAILED_NODE_NOT_REMOVED

Serial API:
HOST->ZW: REQ | 0x61 | nodelD | funclD
ZW->HOST: RES | 0x61 | retVal

ZW->HOST: REQ | 0x61 | funclD | txStatus

5.4.13 ZW_isFailedNode

The node is working properly (removed from
the failed nodes list).

The failed node was removed from the failed
nodes list.

The failed node was not removed because
the removing process cannot be completed.

BYTE ZW_isFailedNode(BYTE nodelD)

Macro: ZW_IS_FAILED_NODE_ID(nodelD)

Used to test if a node ID is stored in the failed node ID list.
Defined in: ZW__controller_api.h

Return value:

BYTE TRUE

Parameters:

nodelD IN The node ID (1...232) to check.
Serial API:

HOST->ZW: REQ | 0x62 | nodelD

ZW->HOST: RES | 0x62 | retVal

If node ID (1..232) is in the list of failing
nodes.

Zensys A/S Z-Wave Application Interfaces Page 165 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.14 ZW _IsPrimaryCtrl
|

BOOL ZW_IsPrimaryCtrl (void)
Macro: ZW_PRIMARYCTRL()

This function is used to request whether the controller is a primary controller or a secondary controller in
the network.

Defined in: ZW_controller_api.h

Return value:

BOOL TRUE If the controller is a primary controller in
the network.

FALSE If the controller is a secondary controller
in the network.

Serial API (Not supported)

5.4.15 ZW_ReplaceFailedNode
|

BYTE ZW_ReplaceFailedNode(BYTE NodelD,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))

Macro: ZW_REPLACE_FAILED_NODE(node,func)

Used to replace a non-responding node with a new one in the requesting controller. A non-responding
node is put onto the failed node ID list in the requesting controller. In case the node responds again at a
later stage then it is removed from the failed node ID list. A node must be on the failed node ID list and
as an extra precaution also fail to respond before it is removed. Responding nodes can’t be replace. The
call works on a primary controller and an inclusion controller.

A call back function should be provided otherwise the function will return without replacing the node.
Defined in: Z\W_controller_api.h
Return value (If the replacing process started successfully then the function will return):
BYTE ZW_FAILED_NODE_REMOVE_STARTED The replacing process started and
now the new node must emit its node

information frame to start the assign
process.

Zensys A/S Z-Wave Application Interfaces Page 166 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Return values (If the replacing process cannot be started then the API function will return one or more
of the following flags:):

BYTE ZW _NOT_PRIMARY_CONTROLLER The replacing process was aborted
because the controller is not a
primary/inclusion/SIS controller.

ZW _NO_CALLBACK_FUNCTION The replacing process was aborted
because no call back function is
used.

ZW_FAILED_NODE_NOT_FOUND The replacing process aborted

because the node was found, thereby
not a failing node.

ZW_FAILED_NODE_REMOVE_PROCESS_BUSY The replacing process is busy.

ZW_FAILED_NODE_REMOVE_FAIL The replacing process could not be
started because of transmitter busy.

Zensys A/S Z-Wave Application Interfaces Page 167 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Parameters:

nodelD IN The node ID (1...232) of the failed node
to be deleted.

completedFunc Replace process completed call back
IN function

Callback function Parameters:

txStatus IN Status of replace of failed node:

ZW_NODE_OK The node is working properly (removed
from the failed nodes list). Replace
process is stopped.

ZW_FAILED_NODE_REPLACE The failed node is ready to be replaced

and controller is ready to add new node
with the nodelD of the failed node.
Meaning that the new node must now
emit a nodeinformation frame to be
included.
ZW_FAILED_NODE_REPLACE_DONE The failed node has been replaced.
ZW_FAILED_NODE_REPLACE_FAILED The failed node has not been replaced.
Serial API:
HOST->ZW: REQ | 0x63 | nodelD | funclD
ZW->HOST: RES | 0x63 | retVal

ZW->HOST: REQ | 0x63 | funclD | txStatus

Zensys A/S Z-Wave Application Interfaces Page 168 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.16 ZW_GetNeighborCount
|

BYTE ZW_GetNeighborCount(BYTE nodelD)

Macro: ZW_GET_NEIGHBOR_COUNT (nodelD)

Used to get the number of neighbors the specified node has registered.

Defined in:

Return value:

BYTE

Parameters:

nodelD IN

Serial API

ZW_controller_api.h

0x00-0xE7
NEIGHBORS_ID_INVALID

NEIGHBORS_COUNT_FAILED

Node ID (1...232) on the node to count
neighbors on.

HOST->ZW: REQ | 0xBB | nodelD

ZW->HOST: RES | OxBB | retVal

Number of neighbors registered.
Specified node ID is invalid.

Could not access routing information - try
again later.

Zensys A/S

Z-Wave Application Interfaces Page 169 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.17 ZW_AreNodesNeighbours
|

BYTE ZW_AreNodesNeighbours (BYTE bNodeA, BYTE bNodeB)

Macro: ZW_ARE_NODES_NEIGHBOURS (nodeA, nodeB)

Used check if two nodes are marked as being within direct range of each other
Defined in: ZW__controller_api.h

Return value:

BYTE FALSE Nodes are not neighbours.
TRUE Nodes are neighbours.

Parameters:

bNodeA IN Node ID A (1...232)

bNodeB IN Node ID B (1...232)

Serial API

HOST->ZW: REQ | 0xBC | nodelD | nodelD

ZW->HOST: RES | 0xBC | retVal

Zensys A/S Z-Wave Application Interfaces Page 170 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.18 ZW_RequestNodeNeighborUpdate
|

BYTE ZW_RequestNodeNeighborUpdate(NODEID,
VOID_CALLBACKFUNC (completedFunc)(BYTE
bStatus))
Macro: ZW_REQUEST_NODE_NEIGHBOR_UPDATE(nodeid, func)
Get the neighbors from the specified node. This call can only be called by a primary/inclusion controller.
An inclusion controller should call ZE_RequestNetWorkUpdate in advance because the inclusion
controller may not have the latest network topology.

Defined in: ZW_controller_api.h

Return value:

BYTE TRUE The discovery process is started and
the function will be completed by the
callback

FALSE The discovery was not started and

the callback will not be called. The
reason for the failure can be one of

the following:
e This is not a primary/inclusion
controller

e There is only one node in the
network, nothing to update.
e The controller is busy doing
another update.
Parameters:

nodelD IN Node ID (1...232) of the node that the
controller wants to get new neighbors from.

completedFunc Transmit complete call back.
IN

Callback function Parameters:

bStatus IN Status of command:

REQUEST_NEIGHBOR_UPDATE_STARTED Requesting neighbor list from the
node is in progress.

REQUEST_NEIGHBOR_UPDATE_DONE New neighbor list received
REQUEST_NEIGHBOR_UPDATE_FAIL Getting new neighbor list failed
Serial API:

HOST->ZW: REQ | 0x48 | nodelD | funclD

Zensys A/S Z-Wave Application Interfaces Page 171 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

ZW->HOST: REQ | 0x48 | funcID | bStatus

5.4.19 ZW_GetRoutingInfo
L __|]

void ZW_GetRoutingInfo(BYTE bNodelD,

BYTE_P pMask,

BYTE bRemoveBad,

BYTE bRemoveNonReps)
Macro: ZW_GET_ROUTING_INFO(bNodelD, pMask, bRemoveBad, bRemoveNonReps)
ZW_GetRoutinglInfo is a function that can be used to read out neighbor information from the protocol.

This information can be used to ensure that all nodes have a sufficient number of neighbors and to
ensure that the network is in fact one network.

The format of the data returned in the buffer pointed to by pMask is as follows:

pMask(i] (0 <i < (ZW_MAX_NODES/8)

Bit 0 1 2 3 4 5 6 7

NodelD | i*8+1 | I*"8+2 | i*8+3 | i*8+4 | i*8+5 | i*8+6 | i"8+7 | i"8+8

If a bit n in pMask]i] is 1 it indicates that the node bNodelD has node (i*8)+n+1 as a neighbour. If n in
pMask]i] is 0, bNodelD cannot reach node (i*8)+n+1 directly.

Defined in: ZW__controller_installer_api.h
Parameters:
bNodelD IN Node ID (1...232) on node whom

routing info is needed on.

pMask OUT Pointer to buffer where routing info
should be put. The buffer should be at
least ZW_MAX_NODES/8 bytes

bRemoveBad IN TRUE Remove bad link from routing
info.

bRemoveNonReps TRUE Remove non-repeaters from the
IN routing info.

Serial API:
HOST->ZW: REQ | 0x80 | bNodelD | bRemoveBad | bRemoveNonReps | funclD

ZW->HOST: RES | 0x80 | NodeMask[29]

Zensys A/S Z-Wave Application Interfaces Page 172 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.20 ZW_GetSUCNodelD
__|

BYTE ZW_GetSUCNodelD(void)

Macro: ZW_GET_SUC_NODE_ID()

Used to get the currently registered SUC node ID.
Defined in: ZW_controller_api.h

Return value:

BYTE The node ID (1..232) on the currently
registered SUC, if ZERO then no SUC
available.

Serial API:

HOST->ZW: REQ | 0x56

ZW->HOST: RES | 0x56 | SUCNodelD

5.4.21 ZW_SetSUCNodelD
__|

BYTE ZW_SetSUCNodelD (BYTE nodelD,
BYTE SUCState,
BYTE bTxOption,
BYTE capabilities,
VOID_CALLBACKFUNC (completedFunc)(BYTE txStatus))

Macro: ZW_SET_SUC_NODE_ID(nodelD, SUCState, bTxOption, capabilities, func)

Used to configure a static/bridge controller to be a SUC/SIS node or not. The primary controller should
use this function to set a static/bridge controller to be the SUC/SIS node, or it could be used to stop
previously chosen static/bridge controller being a SUC/SIS node.

A controller can set itself to a SUC/SIS by calling ZW_EnableSUC and ZW_SetSUCNodelD with its own
node ID. It's recommended to do this when the Z-Wave network only comprise of the primary controller
to get the SUC/SIS role distributed when new nodes are included. It's possible to include a virgin primary
controller with SUC/SIS capabilities configured into another Z-Wave network.

Note: If the function is used in a situation where the remotes are close to each other, then it is
recommended that the function should be called with the bTxOption set to TRUE.

Zensys A/S Z-Wave Application Interfaces Page 173 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Defined in: Z\W_controller_api.h
Return value:

TRUE If the process of configuring the
static/bridge controller is started.

FALSE The process not started because the
calling controller is not the master or the
destination node is not a static/bridge

controller.
Parameters:
nodelD IN The node ID (1...232) of the static
controller to configure.
SUCState IN TRUE Want the static controller to be a SUC
node.
FALSE If the static/bridge controller should not
be a SUC node.
bTxOption IN TRUE Want to send the frame with low

transmission power

FALSE Want to send the frame at normal
transmission power

capabilities IN SUC capabilities that is enabled:
ZW_SUC_FUNC_BASIC_SUC Only enables the basic SUC functionality.

ZW_SUC_FUNC_NODEID_SERVER Enable the node ID server functionality to
become a SIS.

completedFunc Transmit complete call back.
IN

Callback function Parameters:

txStatus IN Status of command:
ZW _SUC_SET_SUCCEEDED The process ended successfully.
ZW_SUC_SET FAILED The process failed.
Zensys A/S Z-Wave Application Interfaces Page 174 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Serial API:

HOST->ZW: REQ | 0x54 | nodelD | SUCState | bTxOption | capabilities | funclD

ZW->HOST: RES | 0x54 | RetVal

ZW->HOST: REQ | 0x54 | funclID | txStatus

In case ZW_SetSUCNodelD is called locally with the controllers own node ID then only the response is

returned. In case true is returned in the response then it can be interpreted as the command is now
executed successfully.

Zensys A/S Z-Wave Application Interfaces Page 175 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.22 ZW_SendSUCID
__|

BYTE ZW_SendSUCID (BYTE node,

BYTE txOption,

VOID_CALLBACKFUNC (completedFunc)(BYTE txStatus))
Macro: ZW_SEND_SUC_ID(nodelD, txOption, func)

Transmit SUC node ID from a primary controller or static controller to the controller node ID specified.
Routing slaves ignore this command, use instead ZW_AssignSUCReturnRoute.

Defined in: ZW_controller_api.h

Return value:

TRUE In progress.
FALSE Not a primary controller or static
controller.
Parameters:
node IN The node ID (1...232) of the node to
receive the current SUC node ID.
txOption IN Transmit option flags. (see

ZW_SendData)

completedFunc Transmit complete call back.
IN

Callback function parameters:

txStatus IN (see ZW_SendData)

Serial API:

HOST->ZW: REQ | 0x57 | node | txOption | funclD
ZW->HOST: RES | 0x57 | RetVal

ZW->HOST: REQ | 0x57 | funclD | txStatus

Zensys A/S Z-Wave Application Interfaces Page 176 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.23 ZW_AssignSUCReturnRoute
|

BOOL ZW_AssignSUCReturnRoute (BYTE bSrcNodelD,
VOID_CALLBACKFUNC (completedFunc)(BYTE bStatus))

Macro: ZW_ASSIGN_SUC_RETURN_ROUTE(srcnode,func)

Notify presence of a SUC/SIS to a Routing Slave or Enhanced Slave. Furthermore is static return routes
(up to 4) assigned to the Routing Slave or Enhanced Slave to enable communication with the SUC/SIS
node. The return routes can be used to get updated return routes from the SUC/SIS node by calling
ZW_RequestNetWorkUpdated in the Routing Slave or Enhanced Slave. The Routing Slave or Enhanced
Slave can call ZW_RediscoveryNeeded in case it detects that none of the return routes are usefull
anymore.

Defined in: Z\W_controller_api.h

Return value:

BOOL TRUE If the assign SUC return route
operation is started.

FALSE If an “assign/delete return route
operation already is active.

Parameters:

bSrcNodelD IN The node ID (1...232) of the routing slave that
should get the return route to the SUC node.

completedFunc Transmit complete call back.
IN

Callback function Parameters:

bStatus IN (see ZW_SendData)

Serial API:

HOST->ZW: REQ | 0x51 | bSrcNodelD | funclD | funcID

The extra funclID is added to ensures backward compatible. This parameter has been removed starting
from dev. kit 4.1x. and onwards and has therefore no meaning anymore.

ZW->HOST: RES | 0x51 | retVal

ZW->HOST: REQ | 0x51 | funcID | bStatus

Zensys A/S Z-Wave Application Interfaces Page 177 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.24 ZW_DeleteSUCReturnRoute
|

BOOL ZW_DeleteSUCReturnRoute (BYTE bNodelD,
VOID_CALLBACKFUNC (completedFunc)(BYTE txStatus))

Macro: ZW_DELETE_SUC_RETURN_ROUTE (nodelD, func)

Delete the return routes of the SUC node from a Routing Slave node or Enhanced Slave node.
Defined in: ZW_controller_api.h
Return value:

BOOL TRUE If the delete SUC return route
operation is started.

FALSE If an “assign/delete return route
operation already is active.

Parameters:
bNodelD IN Node ID (1..232) of the routing slave node.

completedFunc Transmit complete call back.
IN

Callback function Parameters:

txStatus IN (see ZW_SendData)
Serial API:

HOST->ZW: REQ | 0x55 | nodelD | funcID
ZW->HOST: RES | 0x55 | retVal

ZW->HOST: REQ | 0x55 | funcID | bStatus

Zensys A/S Z-Wave Application Interfaces Page 178 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.4.25 ZW_RequestNodelnfo
|

BOOL ZW_RequestNodelnfo (BYTE nodelD,
VOID (*completedFunc)(BYTE txStatus))

Macro: ZW_REQUEST_NODE_INFO(NODEID)

This function is used to request the node information frame from a controller based node in the network.
The Node info is retrieved using the ApplicationControllerUpdate callback function with the status
UPDATE_STATE_NODE_INFO_RECEIVED. This call is also available for routing slaves.

Defined in: ZW _controller_api.h

Return value:

BOOL TRUE If the request could be put in the transmit
queue successfully.
FALSE If the request could not be put in the
transmit queue. Request failed.
Parameters:
nodelD IN The node ID (1...232) of the node to

request the node information frame from.

completedFunc Transmit complete call back.
IN

Callback function Parameters:
txStatus IN (see ZW_SendData)
Serial API:

HOST->ZW: REQ | 0x60 | NodelD

ZW->HOST: RES | 0x60 | retVal

The Serial APl implementation do not return the callback function (no parameter in the Serial API frame
refers to the callback), this is done via the ApplicationControllerUpdate callback function:

e If request nodeinfo transmission was unsuccessful (no ACK received) then the
ApplicationControllerUpdate is called with UPDATE_STATE_NODE_INFO_REQ_FAILED
(status only available in the Serial APl implementation).

¢ If request nodeinfo transmission was successful there is no indication that it went well apart from
the returned Nodeinfo frame which should be received via the ApplicationControllerUpdate
with status UPDATE_STATE_NODE_INFO_RECEIVED.

Zensys A/S Z-Wave Application Interfaces Page 179 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.5 Z-Wave Static Controller API

The Static Controller application interface is an extended Controller application interface with added
functionality specific for the Static Controller.

55.1 ZW_EnableSUC
|

BYTE ZW_EnableSUC (BYTE state, BYTE capabilities)
Macro: ZW_ENABLE_SUC (state)

Used to enable/disable assignment of the SUC/SIS functionality in the controller. Assignment is default
enabled. Assignment is done by the API call ZW_SetSUCNodelD.

If SUC is enabled then the static controller can store network changes sent from the primary, send
network topology updates requested by controllers.

If SUC is disabled, then the static controller will ignore the frames sent from the primary controller after
calling ZW_SetSUCNodelD. If the primary controller called ZW_RequestNetWorkUpdate, then the call
back function will return with ZW_SUC_UPDATE_DISABLED.

Defined in: ZW_controller_static_api.h

Return value:

BYTE TRUE The SUC functionality was
enabled/disabled.
FALSE Attempting to disable a running SUC, not
allowed.
Parameters:
State IN TRUE SUC functionality is enabled.
FALSE SUC functionality is disabled.

capabilities IN SUC capabilities that is enabled:
ZW_SUC _FUNC_BASIC SuC Only enables the basic SUC functionality.

ZW_SUC_FUNC_NODEID_SERVER Enable the SUC node ID server
functionality to become a SIS.

Serial API:
HOST->ZW: REQ | 0x52 | state | capabilities

ZW->HOST: RES | 0x52 | retVal

Zensys A/S Z-Wave Application Interfaces Page 180 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.5.2 ZW_CreateNewPrimaryCtrl
|

Void ZW_CreateNewPrimaryCtrl(BYTE mode,
VOID_CALLBACKFUNC(completedFunc)(LEARN_INFO *learnNodelnfo))

Macro: ZW_CREATE_NEW_PRIMARY_CTRL

ZW_CreateNewPrimaryCtrl is used to add a controller to the Z-Wave network as a replacement for the
old primary controller.

This function has the same functionality as ZW_AddNodeToNetwork(ADD_NODE_CONTROLLER,...)
except that the new controller will be a primary controller and it can only be called by a SUC. The
function is not available if the SUC is a node ID server (SIS).

WARNING: This function should only be used when it is 100% certain that the original primary controller
is lost or broken and will not return to the network.

Defined in: Z\W_controller_static_api.h
Parameters:
mode IN The learn node states are:

CREATE_PRIMARY_START Start the process of adding a a
new primary controller to the
network.

CREATE_PRIMARY_STOP Stop the process.

CREATE_PRIMARY_STOP_FAILED Stop the inclusion and report a
failure to the other controller.

completedFunc IN Callback function pointer (Should only be

NULL if state is turned off).

Callback function Parameters:
*learnNodelnfo.bStatus IN Status of learn mode:

ADD NODE_STATUS LEARN_READY The controller is now
ready to include a
controller into the
network.

ADD_NODE_STATUS_NODE_FOUND A controller that wants to
be included into the
network has been found

ADD NODE_STATUS _ADDING_CONTROLLER A new controller has
been added to the
network

Zensys A/S Z-Wave Application Interfaces Page 181 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

ADD_NODE_STATUS_PROTOCOL_DONE The protocol part of
adding a controller is
complete, the application
can now send data to the
new controller using
ZW_ReplicationSend()

ADD NODE_STATUS_DONE The new controller has
now been included and
the controller is ready to
continue normal
operation again.

ADD_NODE_STATUS_FAILED The learn process failed

*learnNodelnfo.bSource IN Node id of the new node
*learnNodelnfo.pCmd IN Pointer to Application Node information data

(see ApplicationNodelnformation - nodeParm).

NULL if no information present.

The pCmd only contain information when bLen is

not zero, so the information should be stored

when that is the case. Regardless of the bStatus.

*learnNodelnfo.bLen IN Node info length.
Serial API:
HOST->ZW: REQ | 0x4C | mode | funcID

ZW->HOST: REQ | 0x4C | funclID | bStatus | bSource | bLen | basic | generic | specific | cmdclasses]|]

Zensys A/S Z-Wave Application Interfaces Page 182 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.6 Z-Wave Bridge Controller API

The Bridge Controller application interface is an extended Controller application interface with added
functionality specific for the Bridge Controller.

5.6.1 ZW_SendSlaveData
|

BYTE ZW_SendSlaveData(BYTE srclID,
BYTE destID,
BYTE *pData,
BYTE dataLength,
BYTE txOptions,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))

Macro: ZW_SLAVE_SEND_DATA(srcID, destID, data,length, options, func)

Transmit the data buffer to a single Z-Wave Node or all Z-Wave Nodes (NODE_BROADCAST) from the
Virtual Slave node srclD. The data buffer is queued into the end of the transmit queue (first in; first out)
and when ready for transmission the Z-Wave protocol layer transmit the data, with a protocol header in
front and a checksum at the end.

The transmit option TRANSMIT_OPTION_ACK request the destination node to return a transfer
acknowledge that ensure proper transmission. The transmitting node will retry the transmission if no
acknowledge received. If destlD is NODE_BROADCAST then the transmit option is just ignored.

The completedFunc is called when the frame transmission completes, that is when transmitted if ACK is
not requested; when acknowledge received from the destination node, or when routed acknowledge
completed if the frame was transmitted via one or more repeater nodes (response route). The transmit
status TRANSMIT_COMPLETE_NO_ACK indicate that no acknowledge is received from the destination
node. The transmit status TRANSMIT_COMPLETE_FAIL indicate that the Z-Wave network is busy
(jammed).

NOTE: ZW_SendSlaveData uses a transmit queue in the API so calling this function in a loop will
overflow the transmit queue and fail. Instead the completedFunc callback must be used to determine
when the next frame can be send.

Defined in: Z\W_controller_bridge_api.h

Return value:

BYTE FALSE If transmit queue overflow or if srclD is
not a Virtual Slave node.

Zensys A/S Z-Wave Application Interfaces Page 183 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Parameters:

srclD IN Source node ID indicating which
Virtual Slave node transmits the frame.

destID IN Destination node ID
(NODE_BROADCAST == all nodes)

pData IN Data buffer pointer

dataLength IN Data buffer length

txOptions IN Transmit option flags:

TRANSMIT_OPTION_LOW_POWER Transmit at low output power level (1/3 of
normal RF range). NOTE: The
TRANSMIT_OPTION_LOW_POWER
option should only be used when the two
nodes that are communicating are close
to each other (<2 meter). In all other
cases this option should not be used.

TRANSMIT_OPTION_ACK Request acknowledge from destination
node.

completedFunc Transmit completed call back function

Callback function Parameters:

txStatus (see ZW_SendData)

Serial API:
HOST->ZW: REQ | 0xA3 | srcID | destID | dataLength | pData[] | txOptions | funcID
ZW->HOST: RES | OxA3 | retVal

ZW->HOST: REQ | 0xA3 | funclID | txStatus

Zensys A/S Z-Wave Application Interfaces Page 184 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.6.2 ZW_SendSlaveNodelnformation
|

BYTE ZW_SendSlaveNodelnformation(BYTE srcNode,

BYTE destNode,

BYTE txOptions,

VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))
Macro: ZW_SEND_SLAVE_NODE_INFO(srcnode, destnode, option, func)
Create and transmit a Virtual Slave node “Node Information” frame from Virtual Slave node srcNode. The
Z-Wave transport layer builds a frame, request the application slave node information (see
ApplicationSlaveNodelnformation) and queue the “Node Information” frame for transmission. The
completed call back function (completedFunc) is called when the transmission is complete.

NOTE: ZW_SendSlaveNodelnformation uses the transmit queue in the API, so using other transmit
functions before the complete callback has been called by the API might fail.

Defined in: Z\W_controller_bridge_api.h
Return value:
BYTE TRUE If frame was put in the transmit queue.
FALSE If transmitter queue overflow or if bridge
controller is primary or srcNode is invalid
then completedFunc will NOT be called.
Parameters:

srcNode IN Source Virtual Slave Node ID

destNode IN Destination Node ID
(NODE_BROADCAST == all nodes)

txOptions IN Transmit option flags
(see ZW_SendSlaveData)

completedFunc Transmit completed call back function
IN

Callback function Parameters:

txStatus (see ZW_SendSlaveData)

Serial API:

HOST->ZW: REQ | 0xA2 | srcNode | destNode | txOptions | funclD
ZW->HOST: RES | 0xA2 | retVal

ZW->HOST; REQ | 0xA2 | funcID | txStatus

Zensys A/S Z-Wave Application Interfaces Page 185 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.6.3 ZW_SetSlaveLearnMode
|

BYTE ZW_SetSlaveLearnMode(BYTE node,
BYTE mode,
VOID_CALLBACKFUNC(learnSlaveFunc)(BYTE state, BYTE orgID,
BYTE newID))

Macro: ZW_SET_SLAVE_LEARN_MODE (node, mode, func)

ZW_SetSlavelLearnMode enables the possibility for enabling or disabling “Slave Learn Mode”, which
when enabled makes it possible for other controllers (primary or inclusion controllers) to add or remove a
Virtual Slave Node to the Z-Wave network. Also is it possible for the bridge controller (only when primary
or inclusion controller) to add or remove a Virtual Slave Node without involving other controllers.
Available Slave Learn Modes are:

VIRTUAL_SLAVE_LEARN_MODE_DISABLE - Disables the Slave Learn Mode so that no Virtual
Slave Node can be added or removed.

VIRTUAL_SLAVE_LEARN_MODE_ENABLE - Enables the possibility for other Primary/Inclusion
controllers to add or remove a Virtual Slave Node. To add a new Virtual Slave node to the Z-Wave
Network the provided “node” ID must be ZERO and to make it possible to remove a specific
Virtual Slave Node the provided “node” ID must be the nodelD for this specific (locally present)
Virtual Slave Node. When the Slave Learn Mode has been enabled the Virtual Slave node must
identify itself to the external Primary/Inclusion Controller node by sending a “Node Information”
frame (see ZW_SendSlaveNodelnformation) to make the add/remove operation commence.

VIRTUAL_SLAVE_LEARN_MODE_ADD - Add Virtual Slave Node to the Z-Wave network
without involving any external controller. This Slave Learn Mode is only possible when bridge
controller is either a Primary controller or an Inclusion controller.

VIRTUAL_SLAVE_LEARN_MODE_REMOVE - Remove a locally present Virtual Slave Node from
the Z-Wave network without involving any external controller. This Slave Learn Mode is only
possible when bridge controller is either a Primary controller or an Inclusion controller.

The learnSlaveFunc is called as the "Assign" process progresses. The returned “orglD” is the Virtual
Slave node put into Slave Learn Mode, the “newlD” is the new Node ID. If the Slave Learn Mode is
VIRTUAL_SLAVE_LEARN_MODE_ENABLE and nothing is received from the assigning controller the
callback function will not be called. It is then up to the main application code to switch of Slave Learn
mode by setting the VIRTUAL_SLAVE_LEARN_MODE_DISABLE Slave Learn Mode. Once the
assignment process has been started the Callback function may be called more than once.

NOTE: Slave Learn Mode should only be set to VIRTUAL_SLAVE_LEARN_MODE_ENABLE when
necessary, and it should always be set to VIRTUAL_SLAVE_LEARN_MODE_DISABLE again as quickly
as possible. It is recommended that Slave Learn Mode is never set to
VIRTUAL_SLAVE_LEARN_MODE_ENABLE for more than 1 second.

Zensys A/S Z-Wave Application Interfaces Page 186 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Defined in: Z\W_controller_bridge_api.h

Return value:

BYTE TRUE If learnSlaveMode change was
succesful.
FALSE If learnSlaveMode change could not
be done.
Parameters:
node IN Node ID (1...232) on node to set in Slave
Learn Mode, ZERO if new node is to be
learned.
mode IN Valid modes:

VIRTUAL_SLAVE_LEARN_MODE_DISABLE Disable Slave Learn Mode
VIRTUAL_SLAVE_LEARN_MODE_ENABLE Enable Slave Learn Mode

VIRTUAL_SLAVE _LEARN_MODE_ADD ADD: Create locally a Virtual Slave
Node and add it to the Z-Wave
network (only possible if
Primary/Inclusion Controller).

VIRTUAL_SLAVE_LEARN_MODE_REMOVE Remove locally present Virtual Slave
Node from the Z-Wave network (only
possible if Primary/Inclusion
Controller).

learnFunc IN Slave Learn mode complete call back
function

Zensys A/S Z-Wave Application Interfaces Page 187 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Callback function Parameters:
bStatus Status of the assign process.

ASSIGN_COMPLETE Is returned by the callback function when in
the
VIRTUAL_SLAVE_LEARN_MODE_ENABLE
Slave Learn Mode and assignment is done.
Now the Application can continue normal
operation.

ASSIGN_NODEID_DONE Node ID have been assigned. The “orgID”
contains the node ID on the Virtual Slave
Node who was put into Slave Learn Mode.
The “newlID” contains the new node ID for
“orgID”. If “newlID” is ZERO then the “orgID”
Virtual Slave node has been deleted and the
assign operation is completed. When this
status is received the Slave Learn Mode is
complete for all Slave Learn Modes except
the
VIRTUAL_SLAVE_LEARN_MODE_ENABLE
mode.

ASSIGN_RANGE_INFO_UPDATE Node is doing Neighbour discovery
Application should not attempt to send any
frames during this time, this is only applicable
when in
VIRTUAL_SLAVE_LEARN_MODE_ENABLE.

orglD The original node ID that was put into
Slave Learn Mode.

newlD The new Node ID. Zero if “OrgID” was
deleted from the Z-Wave network.

Serial API:
HOST->ZW: REQ | 0xA4 | node | mode | funcID
ZW->HOST: RES | 0xA4 | retVal

ZW->HOST: REQ | 0xA4 | funclD | bStatus | OrgID | newID

Zensys A/S Z-Wave Application Interfaces Page 188 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.6.4 ZW_lIsVirtualNode
|

BYTE ZW_lIsVirtualNode(BYTE nodelD)

Macro: ZW_IS_VIRTUAL_NODE (nodeid)

Checks if “nodelD” is a Virtual Slave node.
Defined in: Z\W_controller_bridge_api.h

Return value:

BYTE TRUE If “nodelD” is a Virtual Slave node.
FALSE If “nodelD” is not a Virtual Slave node.

Parameters:

nodelD IN Node ID (1...232) on node to check if it is

a Virtual Slave node.
Serial API:
HOST->ZW: REQ | 0xA6 | nodelD

ZW->HOST: RES | OxAG6 | retVal

Zensys A/S Z-Wave Application Interfaces Page 189 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

5.6.5 ZW_GetVirtualNodes

VOID ZW_GetVirtualNodes(BYTE *pnodeMask)

Macro: ZW_GET_VIRTUAL_NODES (pnodemask)

Request a buffer containing available Virtual Slave nodes in the Z-Wave network.

The format of the data returned in the buffer pointed to by pnodeMask is as follows:

pnodeMask]i] (0 < i < (ZW_MAX_NODES/8)

Bit

0

1

2

3

4

5

6

NodelD

i*8+1

i*8+2

i*8+3

i*8+4

i*8+5

i*8+6

i*8+7

i*8+8

If bit n in pnodeMask([i] is 1, it indicates that node (i*8)+n+1 is a Virtual Slave node. If bit n in
pnodeMask([i] is O, it indicates that node (i*8)+n+1 is not a Virtual Slave node.

Defined in:

Parameters:

pNodeMask IN

Serial API:

Z\W_controller_bridge_api.h

Pointer to nodemask (29 byte size)
buffer where the Virtual Slave
nodeMask should be copied.

HOST->ZW: REQ | 0xA5

ZW->HOST: RES | 0xA5 | pnodeMask[29]

Zensys A/S

Z-Wave Application Interfaces

CONFIDENTIAL

Page 190 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.7 Z-Wave Installer Controller API

The Installer application interface is basically an extended Controller interface that gives the application
access to functions that can be used to create more advanced installation tools, which provide better
diagnostics and error locating capabilities.

5.7.1 zwTransmitCount
|

BYTE zwTransmitCount
Macro: ZW_TX COUNTER
ZW_TX COUNTER is a variable that returns the number of transmits that the protocol has done since
last reset of the variable. If the number returned is 255 then the number of transmits = 255. The variable
should be reset by the application, when it is to be restarted.

Defined in: Z\W_controller_installer_api.h

Serial API:

To read the transmit counter:

HOST->ZW: REQ | 0x81] (FUNC_ID_GET_TX_COUNTER)

ZW->HOST: RES | 0x81 | ZW_TX_COUNTER (1 byte)

To reset the transmit counter:

HOST->ZW: REQ | 0x82| (FUNC_ID_RESET_TX_COUNTER)

Zensys A/S Z-Wave Application Interfaces Page 191 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.7.2 ZW_StoreNodelnfo
|

BOOL zZW_StoreNodelnfo(BYTE bNodelD,
BYTE_P pNodelnfo,
VOID_CALLBACKFUNC(func)())
Macro: ZW_STORE_NODE_INFO(NodelD,Nodelnfo,function)
ZW_StoreNodelnfo is a function that can be used to restore protocol node information from a backup or
the like. The format of the node info frame should be identical with the format used by
ZW_GET_NODE_STATE.
Defined in: ZW__controller_installer_api.h
Return value:

BOOL TRUE If Nodelnfo was Stored.

FALSE If Nodelnfo was not Stored. (lllegal Nodeld or
MemoryWrite failed)

Parameters:
bNodelD IN Node ID (1...232) to store information at.
pNodelnfo IN Pointer to node information frame.

func IN Callback function. Called when data has
been stored.

Serial API:
HOST->ZW: REQ | 0x83 | bNodelD | nodelnfo (nodelnfo is a NODEINFO field) | funclD
ZW->HOST: RES | 0x83 | retVal

ZW->HOST: REQ| 0x83 | funcld

Zensys A/S Z-Wave Application Interfaces Page 192 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.7.3 ZW_StoreHomelD
|

void ZW_StoreHomelD(BYTE_P pHomelD,
BYTE bNodelD)
Macro: ZW_STORE_HOME_ID(pHomelD, NodelD)

ZW_StoreHomelD is a function that can be used to restore HomelD and NodelD information from a
backup.

Defined in: ZW__controller_installer_api.h
Parameters:
pHomelD IN Pointer to HomelD structure to store

bNodelD IN NodelD to store.
Serial API:

HOST->ZW: REQ | 0x84 | pHomelD[0] | pHomelD[1] | pHomelD[2] | pHomelD[3] | bNodelD

Zensys A/S Z-Wave Application Interfaces Page 193 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.8 Z-Wave Slave API

The Slave application interface is an extension to the Basis application interface enabling
inclusion/exclusion of Slave, Rounting Slave, and Enhanced Slave nodes.

5.8.1 ZW_SetLearnMode
|

void ZW_SetLearnMode(BYTE mode,
VOID_CALLBACKFUNC(learnFunc)(BYTE bStatus, BYTE nodelD))

Macro: ZW_SET_LEARN_MODE(mode, func)

ZW_SetlLearnMode enable or disable home and node ID’s learn mode. This function is used to add a
new Slave node to a Z-Wave network. Setting the ID’s to zero will remove the Slave node from the
Z-Wave network, so that it can be moved to another network.

The Slave node must identify itself to the primary controller node by sending a Node Information frame
(see ZW_SendNodelnformation).

When learn mode is enabled, received "Assign ID's Command" are handled as follow:
1. If the current stored ID's are zero, the received ID's will be stored.
2. |If the received ID's are zero the stored ID's will be set to zero.

The learnFunc is called as the "Assign" process progresses. The returned nodelD is the nodes new
Node ID. If no "Assign" is received the callback function will not be called. It is then up to the main
application code to switch of Learn mode. Once the assignment process has been started the Callback
function may be called more than once. It is not until the callback function is called with
ASSIGN_COMPLETE the learning process is done.

NOTE: Learn mode should only be enabled when necessary, and it should always be disabled again as
quickly as possible. It is recommended that learn mode is never enabled in more than 1 second.

Defined in: Z\W_slave_api.h

Parameters:
mode IN TRUE: Enable; FALSE: Disable
learnFunc IN Node ID learn mode completed call back
function
Zensys A/S Z-Wave Application Interfaces Page 194 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Callback function Parameters:

bStatus Status of the assign process
ASSIGN_COMPLETE Assignment is done and Application can
continue normal operation.
ASSIGN_NODEID _DONE Node ID has been assigned. More
information may follow.
ASSIGN_RANGE_INFO_UPDATE Node is doing Neighbor discovery
Application should not attempt to send
any frames during this time.
nodelD The new (learned) Node ID (1...232)
Serial API:

HOST->ZW: REQ | 0x50 | mode | funcID

ZW->HOST: REQ | 0x50 | funcID | nodelD

5.8.2 ZW_SetDefault
|

void ZW_SetDefault(void)
Macros: ZW_SET_DEFAULT
The API call ZW_SetDefault is used to reset all types of slaves to its default state by clearing the home
ID and node ID to zero. In addition is the routing information cleared in routing and enhanced slaves.
Finally is the RTC timers also cleared in enhanced slaves.

Defined in: Z\W_slave_api.h

Serial API:

HOST->ZW: REQ | 0x42 | funcID

ZW->HOST: REQ | 0x42 | funclD

Zensys A/S Z-Wave Application Interfaces Page 195 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.8.3 ZW_Support96000nly (ZW0201/ZW0301 only)
|

BOOL ZW_Support96000nly(BOOL bValue)
Macros: ZW_SUPPORT9600_ONLY (value)

The API call ZW_Support96000nly can select that non-listening ZW0201/ZW0301 slaves only want to
support 9.6kbit/s baudrate.

Important: This call should only be placed in ApplicationInitSW
Defined in: ZW_slave_api.h
Return value:
BOOL TRUE The baudrate change was succesfull.

FALSE Baudrate could not be changed because the node
was listening.

Parameters:
bValue Select if this node should only support 9.6kbit/s
TRUE This node will now act as a 9.6kbit/s
FALSE This node will respond on all supported baudrates
Serial API:
Not implemented
Zensys A/S Z-Wave Application Interfaces Page 196 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.9 Z-Wave Routing and Enhanced Slave API

The Routing and Enhanced Slave application interface is an extension of the Basis and Slave application
interface enabling control of other nodes in the Z-Wave network.

5.9.1 ZW_RequestNewRouteDestinations
|

BYTE ZW_RequestNewRouteDestinations(BYTE *pDestList,
BYTE bDestListLen ,
VOID_CALLBACKFUNC (completedFunc)(BYTE txStatus))
Macro: ZW_REQUEST_NEW_ROUTE_DESTINATIONS (pdestList, destListLen, func)

Used to request new return route destinations from the SUC/SIS node.

NOTE: No more than the first ZW_MAX_RETURN_ROUTE_DESTINATIONS will be requested
regardless of bDestListLen.

Defined in: Z\W_slave_routing_api.h

Return value:

TRUE If the updating process is started.
FALSE If the requesting routing slave is
busy or no SUC node known to the
slave.
Parameters:
pDestList IN Pointer to list of new destinations to request

bDestListLen Length of Destinationlist buffer. Must not be
more than
ZW_MAX_RETURN_ROUTE_DESTINATIONS

completedFunc Transmit completed call back function
IN

Callback function parameters:

ZW_SUC_UPDATE_DONE The update process is ended
successfully
ZW_SUC_UPDATE_ABORT The update process aborted
because of error
ZW_SUC_UPDATE_WAIT The SUC node is busy
ZW_SUC_UPDATE_DISABLED The SUC functionality is disabled
Zensys A/S Z-Wave Application Interfaces Page 197 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Serial API:

Not supported

5.9.2 ZW_IsNodeWithinDirectRange
L __|]

BYTE ZW_IsNodeWithinDirectRange(BYTE bNodelD)

Macro: ZW_IS_NODE_WITHIN_DIRECT_RANGE (bNodelD)

Check if the supplied nodelD is marked as being within direct range in any of the existing return routes.
Defined in: Z\W _slave_routing_api.h

Return value:

TRUE If node is within direct range
FALSE If the node is beyond direct range or if
status is unknown to the protocol
Parameters:
bNodelD IN Node id to examine
Serial API:
Not supported
Zensys A/S Z-Wave Application Interfaces Page 198 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.9.3 ZW_RequestNodelnfo
|

BOOL ZW_RequestNodelnfo (BYTE nodelD,
VOID (*completedFunc)(BYTE txStatus))

Macro: ZW_REQUEST_NODE_INFO(NODEID)

This function is used to request the node information frame from a slave based node in the network. The
Node info is retrieved using the ApplicationSlaveUpdate callback function with the status
UPDATE_STATE_NODE_INFO_RECEIVED. This call is also available for controllers.

Defined in: Z\W _slave_routing_api.h

Return value:

BOOL TRUE If the request could be put in the transmit
queue successfully.
FALSE If the request could not be put in the
transmit queue. Request failed.
Parameters:
nodelD IN The node ID (1...232) of the node to

request the node information frame from.

completedFunc Transmit complete call back.
IN

Callback function Parameters:
txStatus IN (see ZW_SendData)
Serial API:

HOST->ZW: REQ | 0x60 | NodelD

ZW->HOST: RES | 0x60 | retVal

The Serial APl implementation do not return the callback function (no parameter in the Serial API frame
refers to the callback), this is done via the ApplicationSlaveUpdate callback function:

e If request nodeinfo transmission was unsuccessful (no ACK received) then the
ApplicationSlaveUpdate is called with UPDATE_STATE_NODE_INFO_REQ_FAILED (status
only available in the Serial APl implementation).

e If request nodeinfo transmission was successful there is no indication that it went well apart from
the returned Nodeinfo frame which should be received via the ApplicationSlaveUpdate with
status UPDATE_STATE_NODE_INFO_RECEIVED.

Zensys A/S Z-Wave Application Interfaces Page 199 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.10 Z-Wave Zensor Net Routing Slave API

The Zensor Net routing slave API contains all the functions in the Slave, Routing Slave and Enhanced
Slave API. The following functions are only available in the Zensor Net Routing Slave library.

5.10.1 ZW_ZensorNetBind

BYTE ZW_ZensorNetBind(BYTE bMode,

VOID (*completedFunc)(BYTE bStatus, BYTE bZensorID))

Start or stop Zensor Net bind mode according to the specified mode.

Defined in: ZW _sensor_api.h

Return value:

TRUE
FALSE
Parameters:
bMode IN BIND_MODE_MASTER

BIND_MODE_BIND_SLAVE

BIND_MODE_BIND_ANY

BIND_MODE_UNBIND_SLAVE

BIND_MODE_OFF

CompletedFunc Callback function called when the bind
IN process completes.

Callback function Parameters:

The Zensor has entered the requested
mode

The Zensor could not enter bind mode
because the requested mode doesn’t
match current Slaev/Master state.

The node will become master in the
Zensor Net and will bind other nodet to
the net on request.

The noe will become slave in the Zensor
net and will bind to a mMaster if one in
avalible..

The node will become Master or Slave
depending on how the other part in the
bind process has set its bind mode.

If the node is a Slave node it will unbind
from the network when a Master is
avalible if it is a slave node. If the node is
a Master it will return FALSE in the call.

Turn off bind mode.

bStatus BIND_COMPLETE_SLAVE_OK Bind was completed succesfully and the
node is now a slave in the Zensor Net
Zensys A/S Z-Wave Application Interfaces Page 200 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20
BIND_COMPLETE_MASTER_OK Bind was completed succesfully and the
node is now the master in the Zensor Net
BIND_COMPLETE_FAILED Bind failed
bZensorlD The new ZensorlD of thsis node
Serial API:
Not supported

5.10.2 ZW_ZensorSendDataFlood
|

BYTE ZW_ZensorSendDataFlood(BYTE bNodelD,

BYTE *pData
BYTE bDatalLength
BYTE txOptions

VOID (*completedFunc)(BYTE txStatus))

Send a flooded frame out in the Zensor Net. The frame will be forwarded by all other Zensor Net Routing
Slaves in the network.

Defined in:

Return value:

Parameters:

bNodelD IN

pData IN

bDatalLength IN
txOptions IN

CompletedFunc
IN

CompletedFunc
IN

ZW_sensor_api.h

TRUE

FALSE

Node ID the frame should be send to.
Normally this should be set to OxFF

Pointer to data that should be send in the
frame.

Number of bytes in the data buffer
N/A

Callback function called on transmit
complete.

Callback function called when the bind
process completes.

The frame was queued for transmission

Transmit queue full, frame will not be
send.

Zensys A/S

Z-Wave Application Interfaces

Page 201 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Callback function Parameters:
txStatus TRANSMIT_COMPLETE_OK The frame was send succesfully.

TRANSMIT_COMPLETE_FAIL The frame could not be send because of
lack of resources or to many collisions

Serial API:

Not supported

5.10.3 ZW_ZensorGetID
|

BYTE ZW_ZensorGetID()
Get the current ZensorID of this node..
Defined in: Z\W_sensor_api.h
Return value:
The ZensorlID of this node
Serial API:

Not supported

5.10.4 ZW_ZensorSetDefault
|

void ZW_ZensorSetDefault()
Set the Zensor Net part of this node to default values.

NOTE: The Z-Wave nodelD, HomelD and any assigned return routes will not be reset by calling this
function.

Defined in: Z\W_sensor_api.h
Serial API:

Not supported

Zensys A/S Z-Wave Application Interfaces Page 202 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.11 Serial Command Line Debugger

The debug driver is a simple single line command interpreter, operated via the serial interface (UART —
RS232). The command line debugger is used to dump and edit memory, including the memory mapped
registers.

For a controller/slave_enhanced node the debugger startup by displaying the following help text on the
debug terminal:

Z-Wave Commandline debugger Vx.nn
Keyes(VT100): BS; ~,<,> arrows; F1.
H

Help
DIX]E|F] <addr> [<length>] Dump memory
E[X]E] <addr> Edit memory (Key: SP)
WEX|EIF] <addr> Watch memory location
is idata (80-FF is SFR)
X is xdata
E is External EEPROM
F 1s flash

>

For a slave node the debugger startup by displaying the following help text on the debug terminal:

Z-Wave Commandline debugger Vx.nn
Keyes(VT100): BS; ~,<,> arrows; F1.

H Help
D[X]1]F] <addr> [<length>] Dump memory
ELXI1] <addr> Edit memory (Key: SP)
WIEX]1|F] <addr> Watch memory location
is idata (80-FF is SFR)
X is xdata
| is “Internal EEPROM” flash
F is flash
>

The command debugger is then ready to receive commands via the serial interface.
Special input keys:

F1 (function key 1) same as the help command line.

BS (backspace) delete the character left to the curser.

< (left arrow) move the cursor one character left.

> (right arrow) move the cursor one character right.

A (up arrow) retrieve last command line.

Zensys A/S Z-Wave Application Interfaces Page 203 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Commands:
Hlelp] Display the help text.
D[ump] <addr> [<length>] Dump idata (0-7F) or SFR memory (80-FF).
DX <addr> [<length>] Dump xdata (SRAM) memory.
DI <addr> [<length>] Dump “internal EEPROM?” flash (slave only).
DE <addr> [<length>] Dump external EEPROM (controllers/slave_enhanced only).

DF <addr> [<length>] Dump FLASH memory.

E[dif] <addr> Edit idata (0-7F) or SFR memory (80-FF).

EX <addr> Edit xdata memory.

El <addr> Edit “internal EEPROM” flash (slave only).

EE <addr> Edit external EEPROM (controllers/slave_enhanced only).

WI[atch] <addr> Watch idata (0-7F) or SFR memory (80-FF).

WX <addr> Watch xdata memory.

Wi <addr> Watch “internal EEPROM” flash (slave only).

WE <addr> Watch external EEPROM memory (controllers/slave_enhanced only).
WF <addr> Watch FLASH memory.

The Watch pointer gives the following log (when memory change):
idata SRAM memory Rnn

xdata SRAM memory Xnn

Internal EEPROM flashInn (slave only)
External EEPROM Enn (controllers/slave_enhanced only)
Examples:
>dx 0 ; Edit offset 0x0000 and 0x0001 of xdata SRAM
0000 00 00 00 00 00 00 00 OO 00 00 00 00 OO0 00 00 00
>ex 0 ; Edit offset 0x0000 and 0x0001 of xdata SRAM
0000 00-1 00-2
>dx 0 ; Dump offset 0x0000 to Ox000Ff of xdata SRAM
0000 01 02 00 00 OO0 OO0 00 OO 00 00 00 00 OO0 OO0 00 00
>wx 1X02 ; Watch offset 0x0001 of xdata SRAM
>ex 1
0001 02-1X01
>
Zensys A/S Z-Wave Application Interfaces Page 204 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.11.1 ZW_Debuglnit
|

void ZW_DebuglInit(WORD baudRate)

Macro: ZW_DEBUG_CMD_INIT(baud)

Command line debugger initialization. The macro can be placed within the application initialization
function (see function ApplicationInitSW).

Example:
ZW_DEBUG_CMD_INIT(96); /* setup command line speed to 9600 bps. */
Defined in: ZW _debug_api.h
Parameters:

baudRate IN Baud Rate / 100 (e.g. 96 = 9600 bps,
384 = 38400 bps, 1152 = 115200 bps)

Serial API (Not supported)

5.11.2 ZW_DebugPoll
|

void ZW_DebugPoll(void)
Macro: ZW_DEBUG_CMD_POLL

Command line debugger poll function. Collect characters from the debug terminal and execute the
commands.

Should be called via the main poll loop (see function ApplicationPoll).

By using the debug macros (ZW_DEBUG_CMD_INIT, ZW_DEBUG_CMD_POLL) the command line
debugger can be enabled by defining the compile flag “ZW_DEBUG_CMD” under CDEFINES in the
makefile as follows:

CDEFINES+= EU,\
ZW_DEBUG_CMD,\
SUC_SUPPORT,\
ASSOCIATION,\
LOW_FOR_ON,\
SIMPLELED

Both the debug output (ZW_DEBUG) and the command line debugger (ZW_DEBUG_CMD) can be
enabled at the same time.

Defined in: ZW_debug_api.h

Serial API (Not supported)

Zensys A/S Z-Wave Application Interfaces Page 205 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

5.12 RF Settings in App_RFSetup.a51 file

The Z-Wave libraries are capable of transmitting/receiving on either 868.42MHz (EU) or 908.42MHz (US)
or 921.42MHz (ANZ) or 919.82MHz (HK). The default frequency is set to US.

5.12.1 ZWO0102 RF parameters

To allow for the selection of frequency, match capacity array values (for RF RX and TX mode) and
transmit power levels (normal and low power) every application must have the App_RFSetup.a51
module linked in. The App_RFSetup.a51 module contains the definition of a const block placed in flash:

Table 9. App_RFSetup.a51 module definitions for ZW0102

Offset to | Define name Default | Valid Description

table value values

start

0 FLASH_APPL_MAGIC_VALUE_OFFS | OxFF 0x42 If value is 0x42 then the
table contents is valid. If
not valid default values are
used.

1 FLASH APPL FREQ_OFFS 0x01 0x00- 0x00 = EU.

0x01 0x01 = US.

0xXX = use default.

2 FLASH_APPL RX MATCH_OFFS OxFF If Oxff the default lib value
is used: (0x20).

3 FLASH_APPL_TX_ MATCH_OFFS OxFF If Oxff the default lib value
is used: (0x00).

4 FLASH_APPL_NORM_POWER_OFFS | OxFF If Oxff the default lib value
is used:
US = 0x60
EU = OxFO

5 FLASH_APPL_LOW_POWER_OFFS OxFF If Oxff the default lib value
is used:(0x10).

An application programmer can select RF frequency (US - 908.42MHz or EU — 868.42MHz), and the
values for normal and low power transmissions by changing the const block defined in the
App_RFSetup.a51 module. The RF frequency to use can be set by defining either US or UE in the
application makefile. The TXmatch and RXmatch values don’t need to be adjusted when using a
standard Z-Wave module. In case the layout is modified then refer to [9] regarding how to change the
TXmatch and Rxmatch. The TXnormal Power needs to be adjusted when making the FCC compliance
test. According to the FCC part 15, the output radiated power shall not exceed 94dBuV/m. This radiated
power is the result of the module output power and your product antenna gain. As the antenna gain is
different from product to product, the module output power needs to be adjusted to comply with the FCC
regulations.

The match and power values can be adjusted directly on the module by the Z-Wave Programmer [14].

Zensys A/S Z-Wave Application Interfaces Page 206 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

5.12.2 ZW0201/ZW0301 RF parameters

To allow for the selection of frequency, and transmit power levels (normal and low power) every
application must have the App_RFSetup.a51 module linked in. The App_RFSetup.a51 module contains
the definition of a const block placed in flash:

Table 10. App_RFSetup.a51 module definitions for ZW0201/ZW0301

Offset to
table
start

Define name

Default
value

Valid
values

Description

0

FLASH_APPL_MAGIC_VALUE_OFFS

OxFF

0x42

If value is 0x42 then the
table contents is valid. If
not valid default values
are used.

FLASH_APPL_FREQ_OFFS

0x01

0x00-
0x03

0x00 = EU
0x01=US

0x02 = ANZ

0x03 = HK

0OxXX = use default.

FLASH_APPL_NORM_POWER_OFFS

OxFF

If OXFF the default lib
value is used:

US = 0x1B

EU = 0x2A

ANZ = 0x2A

HK = 0x2A

FLASH_APPL_LOW_POWER_OFFS

OxFF

If OXFF the default lib
value is used:0x14

FLASH_APPL_PLL_STEPUP_OFFS

OxFF

0x00

Only supported on
ZW0301

An application programmer can select RF frequency (US - 908.42MHz or EU — 868.42MHz or ANZ -
921.42MHz or HK - 919.82MHz), and the values for normal and low power transmissions by changing
the const block defined in the App_RFSetup.a51 module. The RF frequency to use can be set by
defining either US or UE or ANZ or HK in the application makefile. The TXnormal Power needs to be
adjusted when making the FCC compliance test. According to the FCC part 15, the output radiated
power shall not exceed 94dBuV/m. This radiated power is the result of the module output power and your
product antenna gain. As the antenna gain is different from product to product, the module output power
needs to be adjusted to comply with the FCC regulations.

When using an external PA, set the field at FLASH_APPL_PLL_STEPUP_OFFS to 0 (zero) for
adjustment of the signal quality. This is necessary to be able to pass a FCC compliance test.

The match and power values can be adjusted directly on the module by the Z-Wave Programmer [14].

Zensys A/S

Z-Wave Application Interfaces

CONFIDENTIAL

Page 207 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

6 HARDWARE SUPPORT DRIVERS

While the previous sections describe the generic Z-Wave modules that handle the wireless

communication between the Z-\WWave nodes, this section describe interfaces to common hardware

components.

6.1 Hardware Pin Definitions

The hardware specific directories in the \product directory contain a ZW_pindefs.h file that defines

macros for access to the 1/0O pins on the module.

Macros for accessing the 1/O pins:

PIN_IN(pin, pullup)

Set I/O pin as input.

Parameters:

pin IN Z-Wave pin name

pullup IN If not zero activate the internal pull-up
resistor

Example:

PIN_IN(101,0) ; define pin 101 as an input pin and disables the internal pull-up resistor.

NOTE: The pull-up feature is not available in the ZW010x ASIC

PIN_OUT(pin)

Set I/O pin as output.

Parameters:
pin IN Z-Wave pin name
Example:
PIN_OUT(102) ; define pin 102 as an output pin.
Zensys A/S Hardware Support driverS Page 208 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

PIN_GET(pin)

Read pin value:
Parameters:
pin IN Z-Wave pin name
Example:

if (PIN_GET(101))
/* action when pin 101 is 1 */

PIN_ON(pin)

Set output pin to 1 (on).
Parameters:
pin IN Z-Wave pin name
Example:

PIN_ON(102); /* setpin 102 to 1 */

PIN_OFF(pin)

Set output pin to 0 (off).
Parameters:
pin IN Z-Wave pin name
Example:

PIN_OFF(I02);/* set pin 102 to 0 */

Zensys A/S Hardware Support driverS Page 209 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

PIN_TOGGLE(pin)

Toggle output pin.
Parameters:
pin IN Z-Wave pin name
Example:

PIN_TOGGLE(IO2);/* toggle pin 102 */

Zensys A/S Hardware Support driverS Page 210 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7 APPLICATION SAMPLE CODE

The Z-Wave Developer’s Kit includes several sample applications: a serial controller application, a LED
dimmer application, a binary sensor and a battery operated binary sensor application for the Z-Wave
module. The sample application realizes a light control system to help the developer to understand how
the various components can interact. In addition the Z-Wave Developer’s Kit also comprises of a number
of PC centric sample applications for displaying advanced functionalities of the Z-Wave protocol:

e How a Z-Wave Module can be controlled from a PC.
e Installation including display of network topology.
e Bridging to and from other networks.

7.1 Building ZW0x0x Sample Code

All the sample applications for the ZW0102/ZW0201/ZW0301 contains source code and make files that
allows the developer to modify and compile the applications without a lot of make file configuration. All
sample applications are built by calling the MK.BAT file that is located in the sample application directory.

Zensys A/S Application Sample Code Page 211 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.1.1 MK.BAT

This batch-file calls the make tool which then, via the makefiles, builds the sample application to the
different RF frequencies (ANZ/EU/HK/US) used when transmitting/receiving and Z-Wave module targets.
Three environment variables must be defined before it is possible to build the sample applications. The
procedure is on a PC using Windows XP as follows:

Environment Yariables

I=er variables For JFR,

Yariable Walue

IMNCLIIDE Z:\Program FilesiMicrosoft Visual Studio. . .

LIE :\Program Files\Microsoft Visual Studio...

path SCAProgram Files\STIbind pc-wings

TEMP C:\Documents and Settings) JFRLocal 5.,

TMP C:ADocuments and Settings) JFRILocal 5.,
| mew || Edt || Delete

Syskem variables

Yariable Walue G

KEIL LOCAL PATH R:KeillcSi 750

KEILPATH Riikeilcs1

LIE Z:\Program Files\Microsoft Visual Studio...

MUMBER_OF P... 1

05 Windows_MT bl
| mew || Edt || Dekte |

[Ok H Cancel]

Figure 9 Configuring environment variables

1. Select Start, Control Panel and System

2. Select Advanced tab and activate the Environment Variables button

3. Under System variables activate the New button

4. Inthe Variable name textbox enter KEILPATH (use capital letters because Windows XP is case
sensitive)

5. Inthe Variable value textbox enter C:\KEIL\C51 and activate the OK button

6. Under System variables activate the New button

7. Inthe Variable name textbox enter KEIL_LOCAL_PATH (use capital letters because Windows XP
is case sensitive)

8. Inthe Variable value textbox enter C:\KEIL\C51_750 and activate the OK button

9. Under System variables activate the New button

10. In the Variable name textbox enter TOOLSDIR (use capital letters because Windows XP is case
sensitive)

11. In the Variable value textbox enter C:\Devkit 5 00\TOOLS and activate the OK button

Afterwards open a command prompt (DOS box) in the relevant sample application directory to build the
application.

Zensys A/S Application Sample Code Page 212 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

v CAWINDOWS\system32\cmd. exe

C:sDevKit_5_HA@~ProductsLED_Dimmer>MK_

Figure 10 Building sample applications

Remember to use upper case in KEILPATH, KEIL_LOCAL_PATH and TOOLSDIR when using
Windows XP, because this operating system is case sensitive. If the environment variables are not
defined then MK.BAT will prompt the user to define them.

Opening a command prompt to a particular directory from Explorer is enabled in the following way:

Start Regedit

Go to HKEY_CLASSES_ROOT \ Directory \ shell

Create a new key called Command

Give it the value of the name you want to appear in the Explorer. Something like Open DOS Box
Under this create a new key called command

Give it a value of cmd.exe /k "cd %L"

Now when you are in the Explorer, right click on a folder, select Open DOS Box, and a command
prompt will open to the selected directory.

NogoRr~wN =

Zensys A/S Application Sample Code Page 213 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

The batch file MK.BAT builds all versions with respect to targets and RF frequencies. The wanted target
can also be entered as a parameter on the command line. The figure below displays the possible targets
for a given product.

e CAWINDOWS\system 3 2\emd. exe

C:wDevHit_5_#8~FProduct~LED_Dimmer>MK 7

Could not find rule for target *7°

Some of the known targets are =
leddimmer_ZWE18x : ZW@18x targets
leddimmer_ZWA2 A : ZUBAZ2Bx targets

leddimmer_ZHAI Bk
C=~DevHit_5_B0“ProductsLED_Dimmer>_

Za38x targets

Figure 11 Possible sample application targets

Remember to enter the targets as shown when using Windows XP, because this operating system is
case sensitive.

When MK.BAT is executed the following directory structure is created within the source code directory

For ZW0102 targets:
- <application>
- build
- <application>_ZW010x_EU
- list - contains list files
- Rels - contains object files and map file

<application>_ ZW010x_EU.hex - flash Intel hex file for EU ZW0102 based module
-<application>_ZW010x_US

- list - contains list files

- Rels - contains object files and map file

<application>_ZW010x_US.hex - flash Intel hex file for US ZW0102 based module

Some flash Intel hex files can depend on the targeted ZW0102 module.

Zensys A/S Application Sample Code Page 214 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

For ZW0201 targets:

- <application>

- build
- <application>_ZW020x_EU
- list - contains list files
- Rels - contains object files and map file

<application> ZW020x_EU.hex - flash Intel hex file for EU ZW0201 based module
-<application>_ZW020x_US

- list - contains list files

- Rels - contains object files and map file

<application>_ZW020x_US.hex - flash Intel hex file for US ZW0201 based module
-<application>_ZW020x_ANZ

- list - contains list files

- Rels - contains object files and map file

<application> ZW020x_ANZ.hex - flash Intel hex file for ANZ ZW0201 based module
-<application>_ZW020x_HK

- list - contains list files

- Rels - contains object files and map file

<application>_ZW020x_HK.hex - flash Intel hex file for HK ZW0201 based module

For ZW0301 targets:

- <application>

- build
- <application>_ZW030x_EU
- list - contains list files
- Rels - contains object files and map file

<application> ZW030x_EU.hex - flash Intel hex file for EU ZW0301 based module
-<application>_ZW030x_US

- list - contains list files

- Rels - contains object files and map file

<application>_ZW030x_US.hex - flash Intel hex file for US ZW0301 based module
-<application>_2ZW030x_ANZ

- list - contains list files

- Rels - contains object files and map file

<application>_ ZW030x_ANZ.hex - flash Intel hex file for ANZ ZW0301 based module
-<application>_ZW030x_HK

- list - contains list files

- Rels - contains object files and map file

<application>_ZW030x_HK.hex - flash Intel hex file for HK ZW0301 based module

7.1.2 Makefiles
Makefile

This file is part of the make job. It creates the directory structure and defines the build targets and calls
the other make files in the build depending on the target.

NOTE: The Makefile might contain test or debug targets that are not build in the default build.

Product\Common directory

Zensys A/S Application Sample Code Page 215 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

The common directory contains a set of standard make files that are used to build all the sample
application. The make files define the compiler and linker options used to build all Z-Wave applications
and the correct defines for all the different library types. The following compiler control line defines are
used by the common makefiles:

ZW_CONTROLLER Basic controller
ZW_CONTROLLER_32 Adding 32KB flash and controller functionality
ZW_CONTROLLER_STATIC Adding static controller functionality
ZW _INSTALLER Adding installer controller functionality
ZW_CONTROLLER_BRIDGE Adding bridge controller functionality
ZW_SLAVE Basic slave
ZW_SLAVE_32 Adding 32KB flash and enhanced slave functionality
ZW_SLAVE_ROUTING Adding routing slave functionality
Z\W010x Basic 100 Series ASIC functionality
ZW0102 ZW0102 ASIC specific functionality
ZW020x Basic 200 Series ASIC functionality
ZW0201 ZW0201 ASIC specific functionality
ZW030x Basic 300 Series ASIC functionality
ZW0301 ZW0301 ASIC specific functionality
NEW_NODEINFO Supports all node information frame formats
Zensys AIS Application Sample Code Page 216 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.2 Binary Sensor Sample Code

The Developer’s Kit contains sample code for a Binary sensor. This device is in effect a binary sensor
where the sensor input is the pin also used as a button input on the device module. The Bin_Sensor will
on every button release transmit a basic set frame to any associated devices. If the button is held for a
little while instead a nodelnfo frame will be transmitted. A static controller such as the one shown in 7.10
can control, configure and assign routes to the Bin_Sensor.

The Bin_Sensor is a binary sensor that supports the association command class described in the device
class specification (see ref [1]). This device complies with the specific device class named routing binary
sensor device class (4.1). The binary sensor advertises via the node information frame support for the
following command classes:

e Binary Sensor command class
e Association command class
e Version command class
e Manufacturer Specific command class
Zensys A/S Application Sample Code Page 217 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

The Bin_Sensor advertises the binary sensor command class, the configuration command class and the
association command class in the node information message.

The Bin_Sensor is a slave device based on the enhanced slave API. During initialization, the Bin_Sensor
will initialize the mounted button, the 4 LED’s and a timer function that handles the button input and
sensor input (in this example the same as the button input). It will also get stored data from the non-
volatile memory. After the initialization the Z-Wave basis software will continually call the
ApplicationPoll function, which contains the Bin_Sensor main function. The ApplicationPoll function
checks if the button or the sensor input has changed state and then acts accordingly to the current state
the Bin_Sensor is in. The other main function is the ApplicationCommandHandler function that is
called every time a command has been received, destined for the Bin_Sensor. This function checks the
command and acts according to the command. When transmitting the Bin_Sensor will, if routes have
been assigned use these.

The Bin_Sensor implements Lost functionality and network topology maintenance by using a series of
methods. If the device is unsuccessful in sending a message a predefined count it will enter lost state,
and attempt to find a SUC in the network, and if successful ask the SUC for routes to the failing devices.
At regular intervals the Bin_Sensor will transmit a Static Route Request, which asks the SUC for any
updates done to the network.

7.2.1 Bin_Sensor Files

The Product\Bin_Sensor directory contains sample source code for a slave application on a Z-Wave
module.

Makefile

This file is part of the make job. It creates the directory structure and defines targets. The following
compiler control line defines are used in the makefiles:

us : Build US frequency target.
EU : Build EU frequency target.
ANZ : Build ANZ frequency target.
HK : Build HK frequency target.
Zensys A/S Application Sample Code Page 218 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Makefile.binsensor_ZW010x_EU
Makefile.binsensor_ZWO010x_US

This file is part of the make job. Is the main makefile for making the EU/US version of the Bin_Sensor
with description of which modules is included in the application and which application specific defines is
used in the compilation of the modules.

Makefile.binsensor_ZWO020x_EU
Makefile.binsensor_ZW020x_US
Makefile.binsensor_ZWO020x_ANZ
Makefile.binsensor_ZW020x_HK

This file is part of the make job. Is the main makefile for making the ANZ/EU/HK/US version of the
Bin_Sensor to the ZW0201 Z-Wave Slave/Controller Unit, with description of which modules is included
in the application and which application specific defines is used in the compilation of the modules.

Makefile.binsensor_ZWO030x_EU
Makefile.binsensor_ZWO030x_US
Makefile.binsensor_ZWO030x_ANZ
Makefile.binsensor_ZW030x_HK

This file is part of the make job. Is the main makefile for making the ANZ/EU/HK/US version of the
Bin_Sensor to the ZW0301 Z-Wave Slave/Controller Unit, with description of which modules is included
in the application and which application specific defines is used in the compilation of the modules.

Bin_Sensor.c

Contains the source for the Bin_Sensor application.

Bin_Sensor.h

Contains definitions for the Bin_Sensor application.

Please refer to section 3.3.13 for the utility library functions which are used by the application.

Zensys A/S Application Sample Code Page 219 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

Macros for accessing the LED’s:
LED_ON(led)
Turn LED on.

Parameter:
led - LED number

Example:
PIN_OUT(LED1); /* define LED1 as an output pin */
LED_ON(1); [*turn LED 1 on */
LED_OFF(led)
Turn LED off.

Parameter:
led - LED number

Example:
LED_OFF(1); /* turn LED 1 off */

LED_TOGGLE(led)

Toggle the LED OFF if the LED was ON and ON if the LED was OFF.

Parameter:
led - LED number

Example:
LED_TOGGLE(1); /* toggle LED 1 */

Zensys A/S Application Sample Code

CONFIDENTIAL

Page 220 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.3 Binary Sensor Battery Sample Code

The Developer’s Kit contains sample code for a battery powered Binary sensor. This device is in effect a
binary sensor where the sensor input is the pin also used as a button input on the device module. When
the Binary Sensor is inactive the ASIC will be powered down. The Binary sensor will power up when the
button is pressed or the RTC / WUT? is fired. Upon wake up, be it button press or RTC/WUT a Wake Up
Notification Frame is sent either as broadcast or as singlecast to the device that configured the wake up
settings. If the devie has any associations it will transmit a basic set to the associated devices. If the
button is held for a longer time a Node Information Frame is transmitted. A static controller such as the
one shown in 7.10 can control, configure and assign routes to the Bin_Sensor_Battery.

The Bin_Sensor_Battery is a binary sensor that supports the association command class and the wake
up command class described in the device class specification (see ref [1]). This device complies with the
specific device class named routing binary sensor device class (4.1). The battery-operated binary sensor
advertises via the node information frame support for the following command classes:

Binary Sensor command class

Wake Up command class

Association command class

Version command class

Manufacturer Specific command class

The Bin_Sensor_Battery is a slave device based on the enhanced slave API. During initialization, the
Bin_Sensor_Battery will initialize the mounted button, the 4 LED’s and a timer function that handles the
button input and sensor input (in this example the same as the button input). It will also get stored data
from the non-volatile memory. After the initialization will go in power down mode and it will wake up again
either when the button is pressed or when the RTC timer / WUT is fired. While the Bin_sensor_Battery is
wake the Z-Wave basis software will continually call the ApplicationPoll function, which contains the
Bin_Sensor_Battery main function. The ApplicationPoll function checks if the button or the sensor input
has changed state and then acts accordingly to the current state the Bin_Sensor_Battery is in. The other
main function is the ApplicationCommandHandler function that is called every time a command has
been received, destined for the Bin_Sensor_Battery. This function checks the command and acts
according to the command. When transmitting the Bin_Sensor_Battery will, if routes have been assigned
use these. If the Bin_sensor_Battery was waked by the sensor input or button activity, then it will power
down again it is done executing any event caused by the sensor input or the button. If the binary sensor
is woken up by RTC timer / WUT and the wake up time interval is expired then it will send wake
notification frame and wait for 5 second before powering down again.

The Bin_Sensor_Battery implements Lost functionality and network topology maintenance by using a
series of methods. If the device is unsuccessful in sending a message a predefined count it will enter lost
state, and attempt to find a SUC in the network, and if successful ask the SUC for routes to the failing
devices. At regular intervals the Bin_Sensor_Battery will transmit a Static Route Request, which asks the
SUC for any updates done to the network.

Note that the wake up notification frame will only be sent when the Bin_sensor_Battery has been
assigned a node ID.

® RTC is used in ZW0102 and WUT is used in ZW0201.

Zensys A/S Application Sample Code Page 221 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

On the ZW0201 some of the uninitialized RAM bytes are used to keep track of the WUT timer. See also
section 4.1

The Bin_Sensor and Bin_Sensor_Battery share the same code base. They are distinquished between by
defining BATTERY when compiling which will also enable use of the utility function file battery.c/h.

7.3.1 Bin_Sensor_Battery Files

The Product\Bin_Sensor_Battery directory contains sample source code for a slave application on a
Z-Wave module.

Makefile

This file is part of the make job. It creates the directory structure and defines targets. The following
compiler control line defines are used in the makefiles:

us : Build US frequency target.
EU : Build EU frequency target.
ANZ : Build ANZ frequency target.
HK : Build HK frequency target.

Makefile.Binsensor_Battery ZW010x_EU
Makefile.Binsensor_Battery ZW010x_US

This file is part of the make job. Is the main makefile for making the EU/US version of the
Bin_Sensor_Battery with description of which modules is included in the application and which
application specific defines is used in the compilation of the modules.

Makefile.binsensor_Battery ZW020x_EU
Makefile.binsensor_Battery ZW020x_US
Makefile.binsensor_Battery ZWO020x_ANZ
Makefile.binsensor_Battery ZWO020x_HK

This file is part of the make job. Is the main makefile for making the ANZ/EU/HK/US version of the
Bin_Sensor_Battery to the ZW0201 Z-Wave Slave/Controller Unit, with description of which modules is
included in the application and which application specific defines is used in the compilation of the
modules.

Makefile.binsensor_Battery ZW030x_EU
Makefile.binsensor_Battery ZW030x_US
Makefile.binsensor_Battery ZWO030x_ANZ
Makefile.binsensor_Battery ZW030x_HK

This file is part of the make job. Is the main makefile for making the ANZ/EU/HK/US version of the
Bin_Sensor_Battery to the ZW0301 Z-Wave Slave/Controller Unit, with description of which modules is
included in the application and which application specific defines is used in the compilation of the
modules.

Bin_Sensor_Batt.c

Contains the source for the Bin_Sensor_Battery application.

Zensys A/S Application Sample Code Page 222 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Bin_Sensor_Batt.h

Contains definitions for the Bin_Sensor_Battery application.

Please refer to section 3.3.13 for the utility library functions which are used by the application.

Zensys A/S Application Sample Code Page 223 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

Macros for accessing the LED’s:
LED_ON(led)
Turn LED on.

Parameter:
led - LED number

Example:
PIN_OUT(LED1); /* define LED1 as an output pin */
LED_ON(1); [*turn LED 1 on */
LED_OFF(led)
Turn LED off.

Parameter:
led - LED number

Example:
LED_OFF(1); /* turn LED 1 off */

LED_TOGGLE(led)

Toggle the LED OFF if the LED was ON and ON if the LED was OFF.

Parameter:
led - LED number

Example:
LED_TOGGLE(1); /* toggle LED 1 */

Zensys A/S Application Sample Code

CONFIDENTIAL

Page 224 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.4 Development Controller Sample Code

The Developer's Kit contains sample code that demonstrates how the basic tasks of adding, removing
and controlling devices in a Z-Wave network can be accomplished using the Z-Wave API.

The Application complies with the Generic Controller command class (see [1]). The controller does not
advertise any command classes in the node information frame. The Controller is able to control devices
using the Binary Switch and Multilevel Switch command classes.

The Z-Wave basis software continually calls the ApplicationPoll function. The ApplicationPoll function
contains a state machine, which initiates actions from user input. The ApplicationCommandHandler
function is only called when the Z-Wave basis software receives information for the application. This
could be a BASIC_REPORT indicating the Dim level of a Multilevel switch.

The Controller application is based on the Controller API using 5 push buttons mounted on the

Development module. Any information to the user is indicated with 2 LED's also mounted on the
Development module.

7.4.1 Dev_Citrl Files.
The Product\Dev_ctrl directory contains the source code for the controller application.
Makefile

This file is part of the make job. It creates the directory structure and defines the targets that can be
selected during make. The following compiler control line defines are used in the makefiles:

us : Build US frequency target.
EU : Build EU frequency target.
ANZ : Build ANZ frequency target.
HK : Build HK frequency target.
ZW_DEBUG : Enable text output via UART.

ZW_DEBUG_CMD : Enable command line debug via UART.
ZW_ID_SERVER : Enable development controller as SIS.

cmd_class.h

The defines in this file is used to access ZW_frames that can not be accessed using the structs defined
in ZW_classcmd.h

dev_ctrl.c

This file contains the main source code for the application. Both ApplicationPoll and
ApplicationCommandHandler are defined in this file.

dev_ctrl_if.h

This file defines how the IO connections on the Z-Wave module are connected to the Development
Module.

eeprom.c + eeprom.h
These files contain functions and define for accessing the application data in the external EEPROM.

p_button.c + p_button.h

Zensys A/S Application Sample Code Page 225 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

These files contain functions and define for detecting Push button presses. This includes Debounce
checking.

Zensys A/S Application Sample Code Page 226 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.5 Door Bell Sample Code

The developer’s Kit contains sample code for a Door Bell sample application. This device an example of
how a battery operated chime in a door bell system could be build. The Door Bell uses the frequently
listening mode where it powers up the radio for a short period every 1 second and if it receives a
command it will power up entirely and turn on the LED’s.

The Door Bell based on the routing slave library and it has its generic device class set to Binary Switch
and the specific device class set to none. The Door Bell supports the following command classes

e Binary Switch command class
e Version command class

NOTE: This node will fail certification because when its level is set to on with a binary set command it will
toggle its state back to off again after a timeout to emulate the behavior of a door bell.

7.5.1 User interface
The button on the Z-Wave module has the following functionality in the Door Bell:
Press shortly Wakeup for 2 sec and send out node information frame

Press and hold for 1s Enter learn mode and timeout after 3 sec

The LEDs on the Z-Wave module has the following meaning:

LEDO | LED1 | LED 2 | Description

Off Off Off The door bell is in powerdown mode (Frequently listening mode)
On Off Off The node was woken up by button press or reset

Off On Off The node was woken up by an RF beam

Off Off On The node is in learn mode

On On On Bell was turned on by Binary or Basic set command

7.5.2 Door Bell Files

The Product\DoorBell directory contains the source code and makefiles for the application.
Mk.bat

Batch file to start compiling the sample application

Makefile

Theist file defines the targets that can be built in this directory.

Makefile.doorbell common

This makefile defines what source files that should be compiled for a specific target and it calls the
appropriate makefiles in the Product\Common directory.

Bell.c + Bell.h

Zensys A/S Application Sample Code Page 227 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

This file contains the source code for the Door Bell sample application

Zensys A/S Application Sample Code Page 228 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.6 LED Dimmer Sample Code

The Developer’s Kit contains sample code for a LED Dimmer. This device is in effect a light switch with a
built in dimmer where the light bulb is substituted with 4 LED’s when using ZW0102. In case a ZW0201 is
used then the light bulb is substituted with only 3 LED’s because it has an output pin less. A controller
such as the Development Controller sample code can control the LED dimmer.

The LED dimmer is a multilevel switch that supports the all switch command class, the protection
command class and the powerlevel command class described in the device class specification (see ref
[1]). This device complies with the specific device class named multilevel power switch device class (4.1).
The LED dimmer does not support the optional basic clock command class. The LED dimmer advertises
via the node information frame support for the following command classes:

Multilevel Switch command class

All Switch command class

Protection command class
Powerlevel command class

Version command class

Manufacturer Specific command class

The LED dimmer is a slave device based on the slave API. During initialization, the LED dimmer will
initialize the mounted button and the 4 LED’s. It will also get stored data from the non-volatile memory.
After the initialization the Z-Wave basis software will continually call the ApplicationPoll function, which
contains the LED dimmer main function. The ApplicationPoll function checks if the button has been
pressed and act according to the state the LED dimmer is in. The other main function is the
ApplicationCommandHandler function that is called every time a command has been received,
destined for the LED dimmer. This function checks the command and acts according to the command.

7.6.1 Build Targets

The LED dimmer sample application will as default create 4 targets for ZW0102. The 2 standard EU and
US targets for the ZM1220 module and in addition EU and US target for the ZM1206 module where _sff
is added to the target name. The only difference between the two target types is that the ZM1206 module
uses the 1010 pin to detect the production test mode and the ZM1220 module uses the ZEROX pin.

Zensys A/S Application Sample Code Page 229 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.6.2 LED_Dimmer Files

The Product\LED_Dimmer directory contains sample source code for a slave application on a Z-Wave
module.

Makefile

This file is part of the make job. It creates the directory structure and defines targets. The following
compiler control line defines are used in the makefiles:

us : Build US frequency target.

EU : Build EU frequency target.

ANZ : Build ANZ frequency target.

HK : Build HK frequency target.

SFF : When using the small form factor module ZM1206.

NOOFFONDIM : When enabled not all the LED’s will turn off when dimming.
APPL_PROD_TEST: Enable the production test.

Makefile.leddimmer_ZWO010x_EU
Makefile.leddimmer_ZW010x_US

This file is part of the make job. Is the main makefile for making the EU/US version of the LEDdimmer
with description of which modules is included in the application and which application specific defines is
used in the compilation of the modules.

Makefile.leddimmer_ZWO010x_sff EU
Makefile.leddimmer_ZWO010x_sff_US

This file is part of the make job. Is the main makefile for making the EU/US version of the LEDdimmer to
the ZM1206 module, with description of which modules is included in the application and which
application specific defines is used in the compilation of the modules.

Makefile.leddimmer_ZW020x_EU
Makefile.leddimmer_zZW020x_US
Makefile.leddimmer_ZW020x_ANZ
Makefile.leddimmer_ZW020x_HK

This file is part of the make job. Is the main makefile for making the ANZ/EU/HK/US version of the
LEDdimmer to the ZW0201 Z-Wave Slave/Controller Unit, with description of which modules is included
in the application and which application specific defines is used in the compilation of the modules.

Makefile.leddimmer_ZWO030x_EU
Makefile.leddimmer_ZWO030x_US
Makefile.leddimmer_ZWO030x_ANZ
Makefile.leddimmer_ZW030x_HK

This file is part of the make job. Is the main makefile for making the ANZ/EU/HK/US version of the
LEDdimmer to the ZW0301 Z-Wave Slave/Controller Unit, with description of which modules is included
in the application and which application specific defines is used in the compilation of the modules.

LEDdim.c

Contains the source for the LEDdimmer application.

LEDdim.h

Contains definitions for the LEDdimmer application.

Zensys A/S Application Sample Code Page 230 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

Macros for accessing the LED’s:

LED_ON(led)

Turn LED on.

Parameter:
led - LED number

Example:
PIN_OUT(LED1); /* define LED1 as an output pin */
LED_ON(1); /* turn LED 1 on */

LED_OFF(led)

Turn LED off.

Parameter:
led - LED number

Example:
LED_OFF(1); /* turn LED 1 off */

LED_TOGGLE(led)

Toggle the LED OFF if the LED was ON and ON if the LED was OFF.

Parameter:
led - LED number

Example:
LED_TOGGLE(1); /* toggle LED 1 */

Zensys A/S Application Sample Code

CONFIDENTIAL

Page 231 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.7 Production Test DUT

The Developer's Kit contains sample code that demonstrates how the basic tasks of testing devices in a
Z-Wave network can be accomplished using the Z-Wave API.

The Z-Wave basis software continually calls the ApplicationPoll function. The ApplicationPoll function
contains a state machine, which initiates actions from user input.

The Production Test DUT sample application is based on the ZW_slave_prodtest_dut library.
This sample application has two functions that can be used during production test
e The radio will start to transmit continuously if the P1.5 (SS_N) pin on the ZM2102 is pulled low
during power up.

e If the pin isn’t pulled low the radio will go into receive mode and send acknowledge to all frames
send to the module.

The program execution flow is as follows:

Initialize HW
No "Enable test" Yes
low ?
|
Y Y
No Received NOP- Chip pins Yes
frame ? shorted ?
No
Yes
A 4) 4
Chip pins No
Reply ACK frame interconnected with >——p]
module ?
Yes
|-
A 4 A 4

Turn on radio and

transmit CW Turn off radio

Figure 12, Prod_Test_DUT test program flow

Zensys A/S Application Sample Code Page 232 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Immediately after program execution start, the state of the “Enable test” pin (pin P1.5 on the ZW0201) is
tested. If the pin is high, “normal” Z-Wave slave code is started, and the DUT will reply to a NOP frame
with an ACK frame. This behavior is used during the Link test, where 10 NOP’s are transmitted from the
Z-Wave test box and 10 ACK’s are expected from the DUT.

If the “Enable test” pin is low, a test program flow is started.

All pins not used during chip programming and test enabling are tested for shorts. The CPU of the
ZW0201 writes a “0101...” pattern to its pins and then reads back the state of the pins. If no shorts, the
pattern read will be “0101...”. Then a “1010...” pattern is written, and “1010...” is expected when reading
back.

The interconnections form the ZW0201 chip to the castellation notched of the ZM2102 module are
tested. The CPU enables the internal pull-up resistors on the ZW0201 chip and sets the pins high. The
read back of the pins should then be high. All pins are then set to low, and because of the external 10
kOhm pull down resistors, all pins should be read back as being low. If an interconnection fails, the
internal pull up will lead the CPU to read the pin as being high instead of low.

If one of the above tests fails, the radio will be turned off.

If both of the above tests pass, the radio will be turned on to transmit a CW, and the spectrum analyzer is
then able to measure the RF frequency and RF output power.

7.7.1 Production Test DUT Files

The Product\Prod_Test DUT directory contains the source code for the Production Test DUT sample
application.

Makefile

This file is part of the make job. It creates the directory structure and defines the targets that can be
selected during make. The following compiler control line defines are used in the makefiles:

us : Build US frequency target.
EU : Build EU frequency target.
ANZ : Build ANZ frequency target.
HK : Build HK frequency target.

prodtestdut.c

This file contains the main source code for the sample application. Both ApplicationPoll and
ApplicationCommandHandler are defined in this file.

prodtestdut.h

This file contains definitions for the prod_test dut sample application.

Zensys A/S Application Sample Code Page 233 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.8 Production Test Generator

The Developer's Kit contains sample code that demonstrates how the basic tasks of testing devices in a
Z-Wave network can be accomplished using the Z-Wave API. The Z-Wave generator is used to verify the
TX / RX circuits on Z-Wave enabled products.

The generator consists of an Interface Module and a ZMxx20 Z-Wave Module to which a push-button
and two LED’s, a red LED and a green LED are connected. After connection to power, the red LED wiill
be on. The green LED is the LED position ‘D6’ on the Interface Module and the red LED is the LED
position ‘D2’. The push button is the ‘S1’ push button on the ZMxx20 Z-Wave Module.

When the button is pressed, 10 NOP’s will be transmitted through the RF-connector of the generator.
The DUT is expected to verify the reception of each NOP with an ACK. During transmission, the red LED
will blink.

If all NOP’s are replied correctly, the red LED will turn off and the green LED will turn on and be on until
the next test is conducted. If the DUT does not reply correct, the red LED will stop blinking and turn on.

The principal schematics of the generator looks like this :

Green LED
n
| | ZWO010x Interface Module
DN i D6
220 pF -—
= T

_LI — ZMxx 20 220 pF —

1 Module L N

¢+

Red LED

IH-

D2
220 pF J2, Antenna —@

o
P4
O]
N
-

| J2 Vce (5V)

220 pF

10 uF

Figure 13, Z-Wave test generator
The Z-Wave basis software continually calls the ApplicationPoll function. The ApplicationPoll function
contains a state machine, which initiates actions from user input. The ApplicationCommandHandler
function is only called when the Z-Wave basis software receives information for the application.

The Production Test Generator sample application is based on the ZW_slave_prodtest_gen library.

Zensys A/S Application Sample Code Page 234 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

The application is controlled via RS232 (115200,8,N,1) or button with fixed timings:

Device will resopond to any char received with an ASCII SPACE followed by a command answer or error

'I' followed by error information:

Following ASCIl commands are implemented.

Received:

IUI:
Frequency US is selected
Response is: '''U"'S'

lEl:
Frequency EU is selected
Response is: "' 'E''U’

ISl:
Start test
Responseis'''S''T'

ICI:
Set the number of NOPs to send
Response: '''C' 'O

INI:
Set the destination node ID.
Response: '''N "I

'R':

Reset the hardware
Response: '''R''S'

For ZW020x series and ZW030x series

IBl:

'4' - Use 40KBit. Response "B:40K"
'9' - Use 9.6kbit. Response "B:9.6k"

On Unknown:
'I' 'received Char'

Zensys A/S

Application Sample Code

CONFIDENTIAL

Page 235 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.8.1 Production Test Generator Files

The Product\Prod_Test_Gen directory contains the source code for the Production Test Generator
sample application.

Makefile

This file is part of the make job. It creates the directory structure and defines the targets that can be
selected during make. The following compiler control line defines are used in the makefiles:

us : Build US frequency target.
EU : Build EU frequency target.
ANZ : Build ANZ frequency target.
HK : Build HK frequency target.

prod_test_gen.c

This file contains the main source code for the sample application. Both ApplicationPoll and
ApplicationCommandHandler are defined in this file.

Zensys A/S Application Sample Code Page 236 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.9 Serial APl Embedded Sample Code

The purpose of the Serial APl embedded sample code is to show how a ZW0102/ZW0201/ZW0301
Z-Wave module can be controlled via the serial port by a host. The following host based PC applications
are available on the Developer’s Kit CD:

e The PC based Controller application showing the available functionality in a Serial APl based on
a static controller API.

e The PC based Installer Tool application showing the available functionality in a Serial API based
on an installer API.

e The PC based Z-Wave Bridge application showing the available functionality in a Serial API
based on a bridge controller API.

Serial API RS 232 > Host
Module

The Serial API can be used as it is or it can be changed to fit specific needs. If changing it be aware that
the serial debug commands described in section 5.3.10.15 cannot be used to debug the application, as
the UART already is used by the Serial API communication. The UART on the Z-Wave Module is
initialized for 115200 baud, no parity, 8 data bits and 1 stop bit.

7.9.1 Supported API Calls

Only a subset of the API calls is available via the serial interface. In Chapter 5 each API call has a
description regarding Serial API support and the corresponding frame format and flow.

7.9.2 Implementation

The Serial APl embedded sample code is provided on the Z-Wave Developer’s Kit. Be aware that
altering the function ID’s and frame formats in the Serial APl embedded sample code can result in
interoperability problems with the Z-Wave DLL supplied on the Developer’s Kit as well as commercially
available GUI applications. Regarding how to determine the current version of the Serial API protocol in
the embedded sample code please refer to the API call ZW_Version. The following sections describe
the Serial API implementation and how a host can communicate with the Serial APl embedded sample
code.

7.9.2.1 Frame Layout

The protocol between the PC (host) and the Z-Wave Module (ZW) consists of three frame types: ACK
frame, NAK frame and Data frame. Each Data frame is prefixed with SOF byte and Length byte and
suffixed with a Checksum byte. As of Serial API Version 4 a fourth frame type has been defined; the
CAN frame.

Zensys A/S Application Sample Code Page 237 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

ACK frame:

The ACK frame is used to acknowledge a successful transmission of a data frame. The format is as
follows:

7 6 5 4 3 2 1 0
ACK (0x06)

NAK frame:

The NAK frame is used to de-acknowledge an unsuccessful transmission of a data frame. The format is
as follows:

7 6 5 4 3 2 1 0
NAK (0x15)

Only a frame with a LRC checksum error is de-acknowledged with a NAK frame.
CAN frame:

The CAN frame is used by the ZW to instruct the host that a host transmitted data frame has been
dropped. The format is as follows:

7 6 5 4 3 2 1 0
CAN (0x18)
Zensys A/S Application Sample Code Page 238 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Data frame:

The Data frame contains the Serial APl command including parameters for the command in question.

The format is as follows:

7 6 5

SOF

Length

Type

Serial APl Command ID

Command Specific Data

Checksum

SOF

Length

Type

Serial APl Command ID

Command Specific Data

Checksum

Start Of Frame. Used for synchronization and is equal to 0x01

Number of bytes in the frame, exclusive SOF and Checksum. The
host application is responsible for entering the correct length field.
The current Serial APl embedded sample code does no validation
og the length field.

Used to distinguish between unsolicited calls and immediate
responses (not callback). The request (REQ) is equal to 0x00 and
response (RES) is equal to 0x01.

Unique command ID for the function to be carried out. Any data
frames returned by this function will contain the same command ID

One or more bytes of command specific data. Possible callback
handling is also defined here.

LRC checksum used to check for frame integrity. Checksum
calculation includes the Length, Type, Serial APl Command
Data and Command Specific Data fields. The Checksum is a
XOR checksum with an initial checksum value of OxFF. For a
checksum implementation refer to the function ConTxFrame in the
conhandle.c module

Zensys A/S

Application Sample Code Page 239 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

7.9.2.2 Frame Flow

The frame flow between a host and a Z-Wave module (ZW) running the Serial APl embedded sample
code depends on the API call. There are four different ways to conduct communication between the host

and ZW.

ZW Host

Data Frame (REQ)

ACK

Data frame from host, which is acknowledged by ZW when successfully received. An example could be
the API call ZW_LockRoute.

ZW Host

Data Frame (REQ)

ACK

Data Frame (REQ)

ACK

Data frame with callback function enabled from host, which is acknowledged by ZW when successfully
received. A data frame (callback) is returned by ZW with the result at command completion. The host
acknowledged the data frame when successfully received. Setting the funcID equal to 0 in the data frame

disable the callback handling. An example could be the API call ZW_SetDefault.

Zensys A/S

Application Sample Code

CONFIDENTIAL

Page 240 of 280

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

ZW

Data Frame (REQ)

ACK

Data Frame (RES)

ACK

Host

Data frame from host, which is acknowledged by ZW when successfully received. A data frame (RES) is
returned by ZW with the result at command completion. The host acknowledges the data frame when

successfully received. An example could be the API call ZW_GetControllerCapabilities.

Zensys A/S

Application Sample Code

CONFIDENTIAL

Page 241 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

ZW Host
Data Frame (REQ)

ACK

Data Frame (RES)

ACK

Data Frame (REQ)

ACK

Data frame with callback function enabled from host, which is acknowledged by ZW when successfully
received. A data frame (RES) is returned by ZW with the status at command initiation. The host
acknowledges the data frame when successfully received. A data frame (callback) is returned by ZW
with the result at command completion. The host acknowledges the data frame when successfully
received. An example could be the API call ZW_RequestNodeNeighborUpdate.

7.9.2.3 Error handling

A number of scenarios exist, which can impede the normal frame flow between the host and the Z-Wave
module running the Serial APl embedded sample code (ZW).

A LRC checksum failure is the only case there is de-acknowledged by a NAK frame in the current Serial
APl embedded sample code. When a host receives a NAK frame can it either retry transmission of the
frame or abandon the task. A task is defined as the whole frame flow associated with the execution of a
specific Serial API function call. If a NAK frame is received by the Z-Wave module in response to a just
transmitted frame, then the frame in question is retransmitted (max 2 retries).

Frames with an illegal length are ignored without any notification. Frames with an illegal type (only REQ
and RES exists) are ignored without any notification

The Serial APl embedded sample code can only perform one host-initiated task at a time. A data frame
will be dropped without any notification (no ACK/NAK frame transmitted) by the ZW if it is not ready to
execute a new host-initiated task. As of Serial API version 4 a CAN frame is transmitted by the ZW when
a received data frame is dropped.

Zensys A/S Application Sample Code Page 242 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

If no CAN frame is received the host detect the missing ACK/NAK by implementing a timeout mechanism
in the receive function. The host timeout must correspond to the timeout defined in ZW. A reasonable
timeout in the host is 2 seconds because the current Serial APl embedded sample code has a default
timeout of 1.5 seconds. The timeout in the Serial API (as of SerialAPI version 4) can also be set by using
the FUNC_ID_SERIAL_API_SET_TIMEOUTS Serial API function:

Serial API:
HOST->ZW: REQ | 0x06 | RXACKtimeout | RXBYTEtimeout
ZW->HOST: RES | 0x06 | oldRXACKtimeout | oldRXBYTEtimeout

RXACKTimeout is the max no. of 10ms ticks the ZW waits for an ACK before timeout. RXBYTETimeout
is the max no. of 10ms ticks the ZW waits for a new byte before timeout; this is only valid when a frame
has been detected and is being collected.

In case the host expect an ACK but instead receive another data frame then it must read the whole data
frame and ACK/NAK accordingly, it will probably also receive a CAN frame to indicate that the ZW has
dropped the host transmitted data frame. Afterwards can the host restart transmission of the pending
frame ZW never ACK’ed or possibly CAN’ed.

Communication between ZW and other Z-Wave nodes can also result in deviations from the normal
frame flow. A get command on application level can for example result in multiple reports coming back
and ZW will just pass on the reports to the host. This can happen in case the Z-Wave node did not hear
ZW acknowledge the report and therefore it is retransmitted. To handle such scenarios requires a
relaxed state machine on application level to handle multiple reports. The same apply for set and get
commands.

7.9.2.4 Restrictions on functions using buffers

The Serial APl is implemented with buffers for queuing requests and responses. This restricts how much
data that can be transferred through MemoryGetBuffer() and MemoryPutBuffer() compared to using them
directly from the Z-Wave API.

The PC application should not try to get or put buffers larger than approx. 80 bytes.

If an application requests too much data through MemoryGetBuffer() the buffer will be truncated and the
application will not be notified.

If an application tries to store too much data with MemoryPutBuffer() the buffer will be truncated before
the data is sent to the Z-Wave module, again without the application being notified.

7.9.2.5 Serial API capabilities

As of Serial API protocol version 4 (to determine Serial API protocol version please refer to the Serial API
Function described under the Z-Wave API Function ZW_Version) it is possible to determine exactly
which Serial API functions a specific Serial APl Z-Wave Module supports with the
FUNC_ID_SERIAL_API_GET_CAPABILITIES Serial API function:

Zensys A/S Application Sample Code Page 243 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Serial API:

HOST->ZW: REQ | 0x07

ZW->HOST: RES | 0x07 | SERIAL_APPL_VERSION | SERIAL_APPL_REVISION |
SERIALAPI_MANUFACTURER_ID1 | SERIALAPI_MANUFACTURER_ID2 |
SERIALAPI_MANUFACTURER_PRODUCT_TYPE1 |
SERIALAPI_MANUFACTURER_PRODUCT_TYPEZ2 |
SERIALAPI_MANUFACTURER_PRODUCT_ID1 | SERIALAPI_MANUFACTURER_PRODUCT_ID2 |
FUNCID_SUPPORTED_BITMASK]]

SERIAL_APPL_VERSION is the Serial API application Version number.
SERIAL_APPL_REVISION is the Serial API application Revision number.
SERIALAPI_MANUFACTURER _ID1 is the Serial API application manufacturer_id (MSB).
SERIALAPI_MANUFACTURER _ID2 is the Serial API application manufacturer_id (LSB).

SERIALAPI_MANUFACTURER_PRODUCT_TYPE1 is the Serial API application manufacturer product
type (MSB).

SERIALAPI_MANUFACTURER_PRODUCT_TYPEZ2 is the Serial API application manufacturer product
type (LSB).

SERIALAPI_MANUFACTURER PRODUCT_ID1 is the Serial API application manufacturer product id
(MSB).

SERIALAPI_MANUFACTURER _PRODUCT_ID2 is the Serial API application manufacturer product id
(LSB).

FUNCID_SUPPORTED_BITMASK]] is a bitmask where every Serial API function ID which is
supported has a corresponding bit in the bitmask set to ‘“1’. All Serial API function IDs which are not
supported have their corresponding bit set to ‘0’. First byte in bitmask corresponds to FuncIDs 1-8

where bit 0 corresponds to FuncID 1 and bit 7 corresponds to FuncID 8. Second byte in bitmask then
corresponds to FunclDs 9-16 and so on.

7.9.2.6 Serial API Softreset

It is possible to make the Z-Wave module do a software reset by using the Serial API function
FUNC_ID_SERIAL_API_SOFT_RESET:

Serial API:

HOST->ZW: REQ | 0x08

Zensys A/S Application Sample Code Page 244 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

7.9.2.7 Build Targets

The Serial APl embedded sample code has more targets than the other Z-Wave sample applications.
This application builds a serial API for several of the library types in Z-Wave. The targets shown below

will be built:

A serial API based on the bridge controller API:

Serialapi_bridge_ZW010x_EU
Serialapi_bridge ZW010x_US
Serialapi_bridge_ZW020x_EU
Serialapi_bridge_ZW020x_US
Serialapi_bridge_ZWO020x_ANZ
Serialapi_bridge_ZW020x_HK
Serialapi_bridge_ZWO030x_EU
Serialapi_bridge_ZWO030x_US
Serialapi_bridge_ZW030x_ANZ
Serialapi_bridge_ZW030x_HK

A serial APl based on the static controller API:

Serialapi_ctrl_static_ZWO010x_EU
Serialapi_ctrl_static_ZW010x_US
Serialapi_ctrl_static_ZWO020x_EU
Serialapi_ctrl_static_ZWO020x_US
Serialapi_ctrl_static_ZWO020x_ANZ
Serialapi_ctrl_static_ZW020x_HK
Serialapi_ctrl_static_ZWO030x_EU
Serialapi_ctrl_static_ZWO030x_US
Serialapi_ctrl_static_ZWO030x_ANZ
Serialapi_ctrl_static_ZW030x_HK

A serial APl based on the controller API:

Serialapi_ctrl_ZW010x_EU
Serialapi_ctrl_ZW010x_US
Serialapi_ctrl_ZW020x_EU
Serialapi_ctrl_ZW020x_US
Serialapi_ctrl_ZW020x_ANZ
Serialapi_ctrl_ZW020x_HK
Serialapi_ctrl_ZWO030x_EU
Serialapi_ctrl_ZW030x_US
Serialapi_ctrl_ZW030x_ANZ
Serialapi_ctrl_ZwW030x_HK

A serial APl based on the installer API:

Serialapi_inst_ZWO010x_EU
Serialapi_inst_ZW010x_US
Serialapi_inst_ZW020x_EU
Serialapi_inst_ZW020x_US
Serialapi_inst_ ZW020x_ANZ
Serialapi_inst_ZW020x_HK
Serialapi_inst_ZWO030x_EU
Serialapi_inst_ZW030x_US
Serialapi_inst_ZWO030x_ANZ
Serialapi_inst_ZWO030x_HK

Zensys A/S

Application Sample Code

CONFIDENTIAL

Page 245 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

A serial API based on the slave library:

Serialapi_slave_ZW010x_EU
Serialapi_slave_ZW010x_US
Serialapi_slave_ZW020x_EU
Serialapi_slave_ZW020x_US
Serialapi_slave ZW020x_ANZ
Serialapi_slave ZW020x_HK
Serialapi_slave ZW030x_EU
Serialapi_slave_ZWO030x_US
Serialapi_slave ZW030x_ANZ
Serialapi_slave_ZWO030x_HK

7.9.2.8 Serial API Files

Makefile

This file is part of the make job. It creates the directory structure and defines targets. The following
compiler control line defines are used in the makefiles:

us : Build US frequency target.
EU : Build EU frequency target.
ANZ : Build ANZ frequency target.
HK : Build HK frequency target.
LOW_FOR_ON : Not used.

SIMPLELED : Not used.

Makefile.serialapi_bridge ZW010x_EU
Makefile.serialapi_ctrl_static_ZW010x_EU
Makefile.serialapi_ctrl_ZWO010x_EU
Makefile.serialapi_installer_ZW010x_EU
Makefile.serialapi_slave_ZW010x_EU

Makefile.serialapi_bridge_ZW020x_EU
Makefile.serialapi_ctrl_static_ZW020x_EU
Makefile.serialapi_ctrl_ZW020x_EU
Makefile.serialapi_installer_ZW020x_EU
Makefile.serialapi_slave_ZW020x_EU

Makefile.serialapi_bridge ZW030x_EU
Makefile.serialapi_ctrl_static_ZW030x_EU
Makefile.serialapi_ctrl_ZWO030x_EU
Makefile.serialapi_installer_ZWO030x_EU
Makefile.serialapi_slave_ZWO030x_EU

This file is part of the make job. Is the makefile used for making the EU version of the Serial API build
(bridge, controller, installer and slave version) with description of which modules is included in the
application and which application specific defines is used in the compilation of the modules.

Makefile.serialapi_bridge ZW010x_US
Makefile.serialapi_ctrl_static_ZW010x_US
Makefile.serialapi_ctrl_ZWO010x_US
Makefile.serialapi_installer_ZW010x_US
Makefile.serialapi_slave_ZWO010x_US

Makefile.serialapi_bridge ZW020x_US
Makefile.serialapi_ctrl_static_ZW020x_US

Zensys A/S Application Sample Code Page 246 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Makefile.serialapi_ctrl_ZWO020x_US
Makefile.serialapi_installer_ZW020x_US
Makefile.serialapi_slave_ZW020x_US

Makefile.serialapi_bridge ZW030x_US
Makefile.serialapi_ctrl_static_ZWO030x_US
Makefile.serialapi_ctrl_ZWO030x_US
Makefile.serialapi_installer_ZW030x_US
Makefile.serialapi_slave_ZWO030x_US

This file is part of the make job. Is the makefile used for making the US version of the Serial API build
(bridge, controller, installer and slave version) with description of which modules is included in the
application and which application specific defines is used in the compilation of the modules.

Makefile.serialapi_bridge_ZW020x_ANZ
Makefile.serialapi_ctrl_static_ZW020x_ANZ
Makefile.serialapi_ctrl_ZW020x_ANZ
Makefile.serialapi_installer_ZW020x_ANZ
Makefile.serialapi_slave_ZW020x_ANZ

Makefile.serialapi_bridge ZW030x_ANZ
Makefile.serialapi_ctrl_static_ZWO030x_ANZ
Makefile.serialapi_ctrl_ZWO030x_ANZ
Makefile.serialapi_installer_ZW030x_ANZ
Makefile.serialapi_slave_ZWO030x_ANZ

This file is part of the make job. Is the makefile used for making the ANZ version of the Serial API build
(bridge, controller, installer and slave version) with description of which modules is included in the
application and which application specific defines is used in the compilation of the modules.

Makefile.serialapi_bridge_2ZW020x_HK
Makefile.serialapi_ctrl_static_ZW020x_HK
Makefile.serialapi_ctrl_ZW020x_HK
Makefile.serialapi_installer_ZW020x_HK
Makefile.serialapi_slave ZW020x_HK

Makefile.serialapi_bridge ZWO030x_HK
Makefile.serialapi_ctrl_static_ZWO030x_HK
Makefile.serialapi_ctrl_ZWO030x_HK
Makefile.serialapi_installer_ZW030x_HK
Makefile.serialapi_slave_ZWO030x_HK

This file is part of the make job. Is the makefile used for making the HK version of the Serial API build
(bridge, controller, installer and slave version) with description of which modules is included in the
application and which application specific defines is used in the compilation of the modules.
UART_buf_io.c / UART_buf_io.h

Low level routines for handling buffered transmit/receive of data through the UART.

conhandle.c / conhandle.h

Routines for handling Serial API protocol between PC and Z-Wave module.

serialappl.c

This module implements the handling of Serial API protocol. That is, parses the frames, calls the
appropriate Z-Wave API library functions and returns results etc. to the PC.

Zensys A/S Application Sample Code Page 247 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.10 Smoke Detector Sample Code

The developer’s Kit contains sample code for a Smoke Detector sample application. This device an
example of how a battery operated smoke detector system could be build. The Smoke Detector uses the
Sensor Net Routing Slave where it powers up the radio for a short period every 1 second and if it
receives a command it will power up entirely and turn on the LED'’s.

The Smoke Detector is based on the Sensor Net Routing Slave library and it has its generic device class
set to Binary Switch and the specific device class set to none. The Smoke Sensor supports the following
command classes

e Binary Switch command class
e Version command class

NOTE: Due to the limited user interface that can be made with one button the Smoke Detector does not

by default support being added to a normal Z-Wave network. However the source code for rigs
functionality is in the application it can just not be activated using the button.

7.10.1 User interface
The button on the Z-Wave module has the following functionality in the Smoke Detector:
Press shortly once Enter bind mode for 2 sec.

Press shortly 2 times Send an alarm
Press and hold button for 1 sec. Reset node to factory default

NOTE: When 2 Smoke Detectors are bound the first time one of the nodes will become master in the
system and must be used to add additional Smoke Detectors to the system. The node that becomes
master will stay in bind mode for an additional 8 seconds after the binding is complete.

The LEDs on the Z-Wave module has the following meaning:

LEDO | LED1 | LED 2 | Description

Off Off Off The Smoke Detector is in powerdown mode (Frequently listening mode)

On Off Off The Smoke Detector is awake

On On Off The Smoke Detector is in bind mode

On Of On The Smoke Detector is reset

On On On The Smoke Detector is sending out an alarm

Blink Blink Blink The Smoke Detector has received an alarm

7.10.2 Smoke Detector Files

The Product\SmokeSensor directory contains the source code and makefiles for the application.
Mk.bat

Batch file to start compiling the sample application

Makefile

This file defines the targets that can be built in this directory.

Zensys A/S Application Sample Code Page 248 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Makefile.smokesensor_common

This makefile defines what source files that should be compiled for a specific target and it calls the
appropriate makefiles in the Product\Common directory.

SmokeSensor.c + SmokeSensor.h

This file contains the source code for the Smoke Detector sample application

Zensys A/S Application Sample Code Page 249 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.10.3 PC based Controller Sample Application

The PC\PcController directory contains sample application source code in C# that implements a PC
based Controller using the development tool Visual Studio 2005.

For further information about the features of the PC based Controller, see [6].

7.10.4 PC based Installer Tool Sample Application

The PC based Installer Tool directory contains a sample application that illustrates the functions in the
Z-Wave Installer API.

For further information about the features of the PC based Installer Tool, see [7].

ReadMe.txt

Readme file for the project.

InstallerTool.dsw + InstallerTool.dsp

Project files for loading the project in Microsoft Visual C++ v6.0.

InstallerTool.cpp + InstallerTool.h

This is the main application class CinstallerTool. The files are as created by the MFC AppWizard.
InstallerTool.rc

This is a listing of all of the Microsoft Windows resources that the program uses. It defines the layout of
the dialog.

Resource.h

Defines all resource IDs.

InstallerToolDIlg.cpp + InstallerToolDIg.h

Implements the ClnstallerToolDIg class, which is where the actual Serial API application is.
StdAfx.cpp + StdAfx.h

These files are used to build a precompiled header file. MFC AppWizard provides the files.
res\InstallerTool.ico

Icon file which is used as the applications icon.

res\InstallerTool.rc2

This file contains resources that are not edited by the Microsoft Visual C++ resource editor. Not used in
this project.

Zensys A/S Application Sample Code Page 250 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

7.10.5 PC based Z-Wave Bridge Sample Application

The PC\Z-WaveBridge directory contains sample application source code in C# that implements a PC
based Z-Wave to UPnP Bridge using the development tool Visual Studio 2005.

For further information about the features of the PC based Z-Wave to UPnP Bridge, see [8].

Zensys A/S Application Sample Code Page 251 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

8 REQUIRED DEVELOPMENT COMPONENTS

8.1 Software development components

There is an additional 3™ party software tool that is required to develop Z-Wave applications that is not
supplied with the Z-Wave Developer’s Kit. That is the Keil PK51 Professional Developer’s Kit for the
8051 microcontroller:

A51 Macro Assembler V7.10
C51 C compiler V7.50
LX51 Linker/Locater V3.65b
LIBX51 Librarian Manager V4.24

Z-Wave libraries and sample applications are build and tested on above versions but newer version
should also apply according to Keil’'s recommendations.

The Keil Developer’s Kits can be purchased directly from Keil or from one of their local distributors.
Please visit www.keil.com for details. Alternatively can it be purchased from Zensys.

Keil Software, Inc. Keil Elektronik GmbH

1501 10th Street, Suite 110 Bretonischer Ring 15

Plano, TX 75074 D-85630 Grasbrunn

USA Germany

Toll Free: | 800-348-8051 Toll Free:

Phone: 972-312-1107 Phone: (49) (089) 4560400
Fax: 972-312-1159 Fax: (49) (089) 46 81 62
Sales: sales.us@keil.com Sales: sales.intl@keil.com
Support: | support.us@keil.com Support: | support.inti@keil.com

8.2 ZW0102/Z2wW0201/Z2W0301 single chip programmer

This Z-Wave Developer’s Kit comes with the Z-Wave Programmer included. The Z-Wave Programmer is
used for downloading new firmware to the ZW0x0x Single Chip. For a detailed description refer to [14].

The Z-Wave Programmer is also used when programming the external EEPROM on the Z-Wave module.
For further details refer to paragraph 8.7.

Zensys A/S Required Development components Page 252 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

8.3 Hardware development components for ZW0102

The ZW0102 based static controller serial APl and all slave sample applications are designed for the
ZW0102 Controller/Slave Unit, which is an assembly of the ZWO0x0x Interface Module [2] and the
ZM1220 Z-Wave Module [4].

Figure 14 ZW0102 Controller/Slave Unit

The ZW0102 development controller sample application is designed for the ZW0102 Development
Controller Unit, which is an assembly of the ZW0x0x Development Module [3] and the ZM1220 Z-Wave

Module [4].

Figure 15 ZW0102 Development Controller Unit

Zensys A/S Required Development components Page 253 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

8.4 Hardware development components for ZW0201

The ZW0201 based static controller serial APl and all slave sample applications are designed for the
ZW0201 Controller/Slave Unit, which is an assembly of the ZWO0x0x Interface Module [2], ZMxx06
Converter Module [17], and the ZM2106C Module (incl. ZM2102) [18]. Alternatively can it be an
assembly of the ZW0x01 Interface Module [2], and the ZM2120C Module (incl. ZM2102) [23].

The ZW0201 development controller sample application is designed for the ZW0201 Development
Controller Unit, which is an assembly of the ZWO0x0x Development Module [3], ZMxx06 Converter
Module [17] and the ZM2106C Module (incl. ZM2102) [18]. Alternatively can it be an assembly of the
ZWO0x0x Development Module [3], and the ZM2120C Module (incl. ZM2102) [23].

8.5 Hardware development components for ZW0301

The ZW0301 based static controller serial API and all slave sample applications are designed for the
ZW0301 Controller/Slave Unit, which is an assembly of the ZWO0x0x Interface Module [2], ZMxx06
Converter Module [17] and the ZM3106C Module (incl. ZM3102) [22]. Alternatively can it be an assembly
of the ZWO0x0x Interface Module [2], and the ZM3120C Module (incl. ZM3102) [24].

The ZW0301 development controller sample application is designed for the ZW0301 Development
Controller Unit, which is an assembly of the ZWO0x0x Development Module [3], ZMxx06 Converter
Module [17] and the ZM3106C Module (incl. ZM3102) [22]. Alternatively can it be an assembly of the
ZWO0x0x Development Module [3], and the ZM3120C Module (incl. ZM3102) [24].

Zensys A/S Required Development components Page 254 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

8.6 ZW0102/Z2wW0201/2ZW0301 lock hit settings

The ZW0102/2W0201/ZW0301 lock bits related to protection of the flash contents should during
development be set as follows:

Table 11. Lock bits settings during development

Lock bits Value | Description

SPIRE 1 It is allowed to read the flash data via the SPI interface
BSIZE[2..0] | 111 Boot sector size set to 0 bytes

BOBLOCK | 1 Page 0 is writeable

This allows the developer to read contents of the flash. The possibility to read flash contents should be
disabled in the end product to avoid copy production. The ZW0102/ZW0201/ZW0301 lock bits in end
products should be set as follows:

Table 12. Lock bits settings in end products

Lock bits Value | Description

SPIRE 0 It is not allowed to read the flash data via the SPI interface
BSIZE[2..0] | 111 Boot sector size set to 0 bytes

BOBLOCK | 1 Page 0 is writeable

Regarding a detailed description about flash programming and lock bits for ZW0102, ZwW0201 and
ZW0301, refer to [16], and [10] respectively.

Zensys A/S Required Development components Page 255 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

8.7 External EEPROM initialization

When creating a controller on a new ZW0102/2W0201/ZW0301 based Z-Wave module a home ID must
be allocated. The home ID is stored in the external EEPROM on the Z-Wave module. Beside the home
ID the remaining part of the external EEPROM must be zeroed. The controller requires an initialized
external EEPROM as describe above to operate correct. With respect to an enhanced slave then the
whole external EEPROM must be zeroed before it can operate correct. The external EEPROM must only
be initialized once when creating a controller or enhanced slave on a new Z-Wave module.

In the binary controller directories ...\Product\Bin\ supplied on the Developer’s Kit CD are the image files
extern_eep.hex to be downloaded found. The 32-bit home ID (xxxxxxxx) is located in byte 8, 9, 10 and
11 (when counting from 0) in the file. Byte 8 is the most significant byte and byte 11 is the least
significant.

:200000005A654E7359730000xxxxxxxx0093
The procedure to initialize the external EEPROM on the Z-Wave module is described in [14].
The external EEPROM on the ZM1206 module can only be updated by the steps described below:

8. Use the Z-Wave Programmer [14] to download eeploader_ZW0102.hex file to the module.

9. Connect a RS-232 serial cable directly from the PC to the Z-Wave interface module. Notice that
download of the extern_eep.hex file is not done via the Z-Wave programmer.

10. Go to the directory ...\Tools\Eeprom_loader\ and open a command prompt (DOS box). The
eeploader.exe program in this directory is used to download the extern_eep.hex file via the COM
port.

11. To download the extern_eep.hex in the Development Controllers binary directory
...\Product\Bin\Dev_Cltrl run eeploader ..\..\Product\Bin\Dev_Ctrl\extern_eep.hex COMXx, where x
is equal to the COM port number the cable is attached to.

12. The PC application displays download progress and finally download status.

Zensys A/S Required Development components Page 256 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

9 APPLICATION NOTE: SUC/SIS IMPLEMENTATION

9.1 Implementing SUC support In All Nodes

Having Static Update Controller (SUC) support in Z-Wave products requires that several API calls must
be used in the right order. This chapter provides details about how SUC support can be implemented in
the different node types in the Z-Wave network.

9.2 Static Controllers

All static controllers has the functionality needed for acting as a SUC in the network, but it is up to the
application to decide if it will allow the SUC functionality to be activated.

A Static Controller will not act as a SUC until the primary controller in the network has requested it to do
sO.

9.2.1 Request For Becoming SUC

The application in a static controller must enable for an assignment of the SUC capabilities by calling the
ZW_EnableSUC The static controller will now accept to become SUC if/when the primary controller
request it by calling ZW_SetSUCNodelD. In case assignment of the SUC capabilities is not enabled then
the static controller will decline a SUC request from the primary controller.

NOTE: There can only be one SUC in a network, but there can be many static controllers that are enable
for an assignment of the SUC capabilities in a network.

9.2.1.1 Request For Becoming a SUC Node ID Server (SIS)

Enabling assignment and requesting the SIS capabilities is done in a similar manner as for the SUC. The
capability parameter in ZW_EnableSUC and ZW_SetSUCNodelD is used to indicate that a SIS is
wanted and thereby accept becoming a SIS in the network.

NOTE: There can only be one SIS in a network, but there can be many static controllers that are enabled
for an assignment of the SIS capabilities in a network. Even if the SIS functionality is enabled for an
assignment in the static controller then the primary controller can still choose only to activate the basic
SUC functionality.

Zensys A/S Application Note: SUC/SIS Implementation Page 257 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

9.2.2 Updates From The Primary Controller

de\\)
o™
n hor®
I:l pesid Slave Node
oo
oo
S_S No?
oS o 7\
=) Ne,
W
N '700'
Primary Ot
Controller U

Static controller

Figure 16 Inclusion of a node having a SUC in the network

When a new node is added to the network or an existing node is removed from the network the primary
controller will send a network update to the SUC to notify the SUC about the changes in the network. The
application in the SUC will be notified about such a change through the callback function
ApplicationControllerUpdate). All update of node lists and routing tables is handled by the protocol so
the call is just to notify the application in the static controller that a node has been added or removed.

9.2.3 Assigning SUC Routes To Routing Slaves

When the SUC is present in a Z-Wave network routing slaves can ask it for updates, but the routing
slave must first be told that there is a SUC in the network and it must be told how to reach the SUC. That
is done from the SUC by assigning a set of return routes to the routing slave so it knows how to reach
the SUC. Assigning the routes to routing slaves is done by calling ZW_AssignSUCReturnRoute with the
nodelD of the routing slave that should be configured.

NOTE: Routing slaves are not notified by the presence of a SUC as a part of the inclusion so it is always
the Applications responsibility to tell a routing slave how it should reach the SUC.

9.2.4 Receiving Requests for Network Updates

When a SUC receives a request for sending network updates to a secondary controller or a routing
slave, the protocol will handle all the communication needed for sending the update, so the application
doesn't need to do anything and it will not get any notifications about the request.

9.2.5 Receiving Requests for new Node ID (SIS only)

When a SUC is configured to act as SIS in the system then it will receive requests for reserving node Ids
for use when other controllers add nodes to the network. The protocol will handle all that communication
without any involvement from the application.

9.3 The Primary Controller

The primary controller is responsible for choosing what static controller in the network that should act as
a SUC and it will also send notifications to the SUC about all changes in the network topology. The
application in a primary controller is responsible for choosing the static controller that should be the SUC.
There is no fixed strategy for how to choose the static controller, so it is entirely up to the application to
choose the controller that should become SUC. Once a static controller has been selected the

Zensys A/S Application Note: SUC/SIS Implementation Page 258 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

application must use the ZW_SetSUCNodelD to request that the static controller becomes SUC. The
capabilities parameter in the ZW_SetSUCNodelD call will determine if the primary controller enables the
ID Server functionality in the SUC.

Once a SUC has been selected the protocol in the primary controller will automatically send notifications
to the SUC about all changes in the network topology.

NOTE: A static controller can decline the role as SUC and in that case the callback function from
ZW_SetSUCNodelD will return with a FAILED status. The static controller can also refuse to become
SIS if that was what the primary controller requested, but accept to become a SUC.

9.4 Secondary Controllers

The secondary controllers in a network containing a SUC can ask the SUC for network topology changes
and receive the updates from the SUC. It is entirely up to the application if and when an update is
needed.

Request update ———)

RS

|

4——Topology update

4——Topology update

00000
00 00
00000

Static update

Secondary 4—— Update complete —————
controller controller

Figure 17 Requesting network updates from a SUC in the network

9.4.1 Knowing The SUC

The first thing the secondary controller should check is if it knows a SUC at all. Checking if a SUC is
known by the controller is done with the ZW_GetSUCNodelD call and until this call returns a valid node
ID the secondary controller can’t use the SUC. The only time a secondary controller gets information
about the presence of a SUC is during controller replication, so it is only necessary to check after a
successful controller replication.

9.4.2 Asking For And Receiving Updates

If the secondary controller knows the SUC it can ask for updates from the SUC. Asking for updates is
done using the ZW_RequestNetWorkUpdate function. If the call was successful the update process will
start and the controller application will be notified about any changes in the network through calls to
ApplicationControllerUpdate). Once the update process is completed the callback function provided in
ZW_RequestNetWorkUpdate will be called.

If the callback functions returns with the status ZW_SUC_UPDATE_OVERFLOW then it means that
there has been more that 64 changes made to the network since the last update of this secondary
controller and it is therefore necessary to do a controller replication to get this secondary controller
updated.

NOTE: The SUC can refuse to update the secondary controller for several reasons, and if that happens
the callback function will return with a value explaining why the update request was refused.

WARNING: Consider carefully how often the topology of the network changes and how important it is for
the application that the secondary controller is updated with the latest.

Zensys A/S Application Note: SUC/SIS Implementation Page 259 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

9.5 Inclusion Controllers

When a SIS is present in a Z-Wave network then all the controllers that knows the SIS will change state
to Inclusion Controllers, and the concept of primary and secondary controllers will no longer apply for the
controllers. The Inclusion controllers has the functionality of a Secondary Controller so the functionality
described in section 9.4 also applies for secondary controllers, but Inclusion Controllers are also able to
include/exclude nodes to the network on behalf of the SIS. The application in a controller can check if a
SIS is present in the network by using the ZW_GetControllerCapabilities function call. This allows the
application to adjust the user interface according to the capabilities. If a SIS is present in the network
then the CONTROLLER_NODEID_SERVER_PRESENT bit will be set and the
CONTROLLER_IS_SECONDARY bit will not be set.

] D
7|\
Soo | ey e ——
—5sn s — [S S
Shen 22 | — Rt Nt D —)
QQQ
S 2 S | ¢—4Resned Nt D ——
New node ,
Cortdle s

Figure 18 Inclusion of a node having a SIS in the network

9.6 Routing Slaves

The routing slave can request a update of its stored return routes from a SUC by using the
ZW_RequestNetWorkUpdate API call. There is no API call in the routing slave to check if the SUC is
known by the slave so the application must just try ZW_RequestNetWorkUpdate and then determine
from the return value if the SUC is known or not. If the SUC was known and the update was a success
then the routing slave would get a callback with the status SUC_UPDATE_DONE, the slave will not get
any notifications about what was changed in the network.

A static update controller (SUC) can help a battery-operated routing slave to be re-discovered in case it
is moved to a new location. Further a primary static controller can also help in case no SUC is present in
the network. The lost slave initiates the re-discovery process because it will be the first to recognize that
it is unable to reach the configured destinations and therefore can the application call
ZW_RediscoveryNeeded to request help from other nodes in the network.

The lost battery operated routing slave start to send “I'm lost” frames to each node beginning with node
ID = 1. It continue until it find a routing slave which can help it, i.e. the helping routing slave can obtain
contact with a SUC or primary controller (require it's static and mains powered). Scanning through the
node ID’s is done on application level. Other strategies to send the “I'm lost” frame can be implemented
on the application level.

Zensys A/S Application Note: SUC/SIS Implementation Page 260 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

Lost
Routing
Slave

Helping
Routing
Slave

Maybe hops

Static
controller

I'm lost >
|

This slave is lost: NodelD

Controller Contacted ‘

)

Accepted

Find Neighbors

<
<

NOPs

Cmd Completed

Get Neighbors

Range information

SUC routes

Transfer end

<

Figure 19 Lost routing slave frame flow

The helping routing slave must maximum use three hops to get to the controller, because it is the fourth

hop when the controller issues the re-discovery to the lost routing slave. All handling in the helping slave
is implemented on protocol level. In case a primary controller is found then it will check if a SUC exists in
the network. In case a SUC is available it will be asked to execute the re-discovery procedure. When the
controller receive the request “Re-discovery node ID x” it update the routing table with the new neighbor

information. This allows the controller to execute a normal re-discovery procedure.

In case the ZW_RediscoveryNeeded was successful then the lost routing slave would get a callback

with the status ZW_ROUTE_UPDATE_DONE and afterwards must the application call
ZW_RequestNetWorkUpdate to obtain updated return routes from the SUC. See the

Bin_Sensor_Battery sample code for an example of usage.

Zensys A/S

Application Note: SUC/SIS Implementation

CONFIDENTIAL

Page 261 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

10 APPLICATION NOTE: INCLUSION/EXCLUSION IMPLEMENTATION

This note describes the API calls the application layer needs to use when including new nodes to the
network or excluding nodes from the network.

10.1 Including new nodes to the network

The API calls required by the including controller and the devices that is included are described. The
callbacks as well as the steps the protocol takes without any application level involvement is also
described. Finally it illustrates the frame flow between the two devices during the inclusion process.

The Z-Wave API calls ZW_AddNodeToNetwork and ZW_SetLearnMode are used to include nodes in a
Z-Wave network. The primary/inclusion controller use the API call ZW_AddNodeToNetwork when
including a node to the network and ZW_SetLearnMode is used by the controller or slave node that is to
be included.

For the primary/inclusion controller that is including a node the ZW_AddNodeToNetwork is called with
either:

ADD_NODE_ANY Add any type of node to the network

ADD_NODE_SLAVE Only add a node based on slave libraries

ADD NODE_CONTROLLER Only add a node based on controller libraries
ADD_NODE_EXISTING Node is already in the network

To avoid the need to differentiate on the user interface whether it is a controller or slave the
ADD_NODE_ANY can be used. The application can decide which actions to take based on the callback

values.

ADD_NODE_SLAVE and ADD_NODE_CONTROLLER are available to support backward compatibility
in case they are used on devices with separate slave and controller inclusion procedures.

ADD_NODE_EXISTING is useful when the controller application want the Node Information frame from a
node already included in the network.

The figure below illustrates the inclusion process between a primary/inclusion controller and a node that
the user wishes to include in the network.

Zensys A/S Application Note: Inclusion/EXCLUSION Implementation Page 262 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Controller that Node To Be
include a node included

Application calls:
ZW_AddNodeToNetwork(
ADD_NODE_ANY, LearnHandler)

Protocol calls LearnHandler with:
ADD_NODE_STATUS_LEARN_READY Application call:
(Signal to user that Ctrl is ZW_SetlLearnMode(TRUE, Cal Iback)

ready to receive Nodelnfo frame)

Slave based Applications call:
Node Information Frame ZW_SendNodelInformation(..)
Controller based just wait

Protocol calls LearnHandler with
ADD_NODE_STATUS_NODE_FOUND

Protocol calls LearnHandler with Assign ID to node Protcocol call Callback with:
ADD_NODE_STATUS_ADDING_* LEARN_MODE_STARTED - For
controllers
N ASSIGN_NODEID_DONE - For slaves

\
Protocol calls LearnHandler with [~~~ ———--———————~ h

ADD_NODE_STATUS_PROTOCOL_DONE | _-cef Frotocol bat :

['1 S !
Application calls: " ZW REPLICATION SEND ONLY VALID FOR CONTROLLERS
ZW_ReplicationSend(. . ,Func) J—4~—:14~—77—~—74*f771 i Protocol calls
L ApplicationCommandHandler with

|[m T T 2 Application should handle data

Protocol calls Func with: St and respond with:

|
|
|
|
Payload from ZW_REPL.._SEND
» 3
i ZW_REPLICATION_COMMAND_COMPLETE [\ . -l —2HTEElE ZW_ReplicationReceiveComplete |
| |

Protocol call
Callback with status
LEARN_MODE_DONE - For controllers
ASSIGN_COMPLETE

Application calls:
ZW_AddNodeToNetwork(Transfer end
ADD_NODE_STOP,LearnHandler)

Protocol calls LearnHandler with
ADD_NODE_STATUS_DONE

Figure 20 Node inclusion frame flow

Legend:

1. Bold frames indicate that the Application initiates an action.

2. Dashed frames indicate optional steps and frame flows.

3. ltalic indicates a callback function specified by the application.

To allow the primary/inclusion controller in a Z-Wave network to include all kind of nodes, it is necessary
to have a frame that describes the capabilities of a node. Some of the capabilities will be protocol related
and some will be application specific. All nodes will automatically send out their node information frame
when the action button on the node is pressed. Once a node is included into the network it can always at
a later stage get the node information from a node by requesting it with the API call
ZW_RequestNodelnfo).

All slave nodes will per default start with Home ID is 0x00000000 and Node ID 0x00. All controllers will
per default start with a unique Home ID and Node ID 0x01. Both have to be changed before the node

Zensys A/S Application Note: Inclusion/EXCLUSION Implementation Page 263 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

can be included into a network. Furthermore the node must enter a learn mode state in order to accept
assignment of new ID’s. That state is communicated from the node by sending out a node information
frame as described. The primary/inclusion controller can now assign a Home and Node ID to the node to
be included in the Z-Wave network. In case the node is already included to a network then the
primary/inclusion controller refuses to include it.

During “Other protocol data” the network topology is discovered and updated. The primary/inclusion
controller request the new node to check which of the current nodes in the network it can communicate
directly with. In case a SUC/SIS is present in the network then the new node is informed about its
presence and SUC return routes are transferred automatically. In case the SUC/SIS is created at a later
stage, then the API call ZW_AssignSUCReturnRoutes can be used to allow the node to communicate
with the SUC/SIS.

In case a controller is included then it's optional to transfer groups and scenes on application level using
the Controller Replication command class [1]. This option is very handy, as it will save the user a lot of
time reconfiguring the groups and scenes in the new controller. The Controller Replication command
class must only be used in conjunction with a controller shift or when including a new controller to the
network. The API call ZW_ReplicationSend must be used by the sending controller when transferring
the group and scene command classes to another controller. The API call
ZW_ReplicationReceiveComplete must be used by the receiving controller as acknowledge on
application level because the data must first be stored in non-volatile memory before it can receive the
next group or scene data.

A controller not supporting the Controller Replication Command Class must implement the acknowledge
on application level when receiving Controller Replication commands to avoid that the sending controller
is locked due to a missing acknowledge on application level. The receiving controller will then ignore the
content of the Controller Replication commands but acknowledge on application level using the API call

ZW_ReplicationReceiveComplete.

Zensys A/S Application Note: Inclusion/EXCLUSION Implementation Page 264 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

The following code sample shows how add node functionality is implemented on a controller capable of
adding nodes to the network:

/* Call to be performed when user/application wants to include a node to the network
*/
ZW_AddNodeToNetwork (ADD_NODE_ANY, LearnHandler);

/* LearnHandler

*x Function description

*x Callback function to ZW_ADD_NODE_TO_NETWORK

A L o o o o e e e */
void LearnHandler(LEARN_INFO *learnNodelnfo)

{

if (learnNodelnfo->bStatus == ADD_NODE_STATUS_LEARN_READY)

/* Application should now signal to the user that we are ready to add a node.
User may still choose to abort */

¥
else if (learnNodelnfo->bStatus == ADD_NODE_STATUS_NODE_FOUND)
/* Protocol is busy adding node. User interaction should be disabled */
¥
else if (learnNodelnfo->bStatus == ADD_NODE_STATUS_ADDING_SLAVE)

/* Protocol is still busy, this is just an information that it is a slave based
unit that is being added */

3
else it (learnNodelnfo->bStatus == ADD_NODE_STATUS_ADDING_CONTROLLER)

/* Protocol is still busy, this is just an information that it is a controller
based unit that is being added */

}

else if (learnNodelnfo->bStatus == ADD_NODE_STATUS_PROTOCOL_DONE)

{
/* Protocol is done. If it was a controller that was added, the application can
now transfer information with ZW_ReplicationSend if any applications specific
data that needs to be transferred to the included controller at inclusion time
*/

/* When application is done it stop the process with */
ZW_AddNodeToNetwork (ADD_NODE_STOP, LearnHandler);

3
else if (learnNodelnfo->bStatus == ADD_NODE_STATUS_FAILED)

/* Add node failed - Application should indicate this to user */
ZW_AddNodeToNetwork (ADD_NODE_STOP_FAILED, NULL);

¥
else if (learnNodelnfo->bStatus == ADD_NODE_STATUS_DONE)

/* Add node is done. Application can move on Now is a good time to check if the
added node should be set as SUC or SIS */

}
}

Zensys A/S Application Note: Inclusion/EXCLUSION Implementation Page 265 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

The following code samples show how an application typically implement the code needed in order to be
able to include itself in an existing network.

Sample code for controller based devices:

/* Call to be performed when a controller wants to be include in the network */
ZW_SetlLearnMode (TRUE, InclusionHandler);
/*Controller based devices just wait for the learn process to start*/

/* InclusionHandler
*x Callback function to ZW_SetlLearnMode
A o e e e e e e e e */

void InclusionHandler(
LEARN_INFO *learnNodelnfo)

{

if ((*learnNodelnfo) .bStatus == LEARN_MODE_STARTED)
/* The user should no longer be able to exit learn mode.
ApplicationCommandHandler should be ready to handle ZW_REPLICATION_SEND_DATA
frames if it supports transferring of Application specific data* /

}

else if ((*learnNodelnfo)_bStatus == LEARN_MODE_FAILED)
/* Something went wrong - Signal to user */

}
else if ((*learnNodelnfo) .bStatus == LEARN_MODE_DONE)

{
/* All data have been transmitted. Capabilities may have changed. Might be a
good idea to read ZW_GET_CONTROLLER_CAPABILITIES() and to check that
associations still are valid in order to check if the controller have been
included or excluded from network*/
3
ks
Zensys A/S Application Note: Inclusion/EXCLUSION Implementation Page 266 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

Sample code for slave based devices:

/* Call to be performed when a slave wants to be include in the network */
ZW_SetlLearnMode(TRUE, InclusionHandler);
ZW_SendNodelnformation(NODE_BROADCAST, TRANSMIT_OPTION_LOW_POWER,....);

/* InclusionHandler
*x Callback function to ZW_SetlLearnMode
R e e e e e e e e e e */

void InclusionHandler
BYTE bStatus /* IN Current status of Learnmode*/
BYTE nodelD) /* IN resulting nodelD - ITf Ox00 the node was removed from network*/

{
if(bStatus == ASSIGN_RANGE_INFO_UPDATE)

/* Application should make sure that it does not send out Nodelnfo now that we
are updating range */

}
if(bStatus == ASSIGN_COMPLETE)
{

/* Assignment was complete. Check if it was inclusion or exclusion and maybe
tell user we are done */
if (nodelD !'= 0)

/* Node was included in a network*/

}

else
/* Node was excluded from a network. Reset any associations */
}
P
else if (bStatus == ASSIGN_NODEID_DONE)
/* 1D is assigned. Protocol will call with bStatus=ASSIGN_COMPLETE when done */

}
}

10.2 Excluding nodes from the network

The API calls required by the controller that exclude and the device that is to be excluded is described.
The callbacks as well as the steps the protocol takes without any application level involvement is also
described. Finally it illustrates the frame flow between the two devices during the exclusion process.

The Z-Wave API calls ZW_RemoveNodeFromNetwork and ZW_SetLearnMode are used to exclude
nodes from a Z-Wave network. The primary/inclusion controller use the API call
ZW_RemoveNodeFromNetwork when removing a node from a network and ZW_SetLearnMode is used
by the controller or slave node that is to be removed.

For the primary/inclusion controller that is including a node the ZW_RemoveNodeFromNetwork is
called with either:

REMOVE_NODE_ANY - Remove any type of node from the network
REMOVE_NODE_SLAVE - Only remove a node based on slave libraries

REMOVE_NODE_CONTROLLER - Only remove a node based on controller libraries

Zensys A/S Application Note: Inclusion/EXCLUSION Implementation Page 267 of 280

CONFIDENTIAL

INS10247-11

Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1)

2007-03-20

To avoid the need to differentiate on the user interface whether it is a controller or slave the
REMOVE_NODE_ANY can be used. The application can decide which actions to take based on the

callback values.

REMOVE_NODE_SLAVE and REMOVE_NODE_CONTROLLER are available to support backward
compatibility in case they are used on devices with separate slave and controller exclusion procedures.

The figure below illustrates the exclusion process between a primary/inclusion controller and a node that
the user wishes to exclude from the network.

Controller that
remove a node

Node To Be
removed

Application calls:
ZW_RemoveNodeFromNetwork(
REMOVE_NODE_ANY, LearnHandler

)

Protocol
REMOVE_NODE_STATUS_LEARN_READ
(Signal to user that Ctrl is
ready to receive Nodelnfo fram

calls LearnHandler with:

Y

e)

ZW_SetLearnMode (TRUE,Cal Iback)

Application call:

Protocol calls LearnHandler wi

REMOVE_NODE_STATUS_NODE_FOUND

th

Node Information Frame

Slave based Applications call:
ZW_SendNodelnformation(..)
Controller based just wait

Protocol calls LearnHandler wi
ADD_NODE_STATUS_REMOVING_*

th

Remove ID from node

Protocol calls LearnHandler wi
REMOVE_NODE_STATUS_DONE

th

ASSIGN_NODEID_DONE - For slaves

Protocol call
Callback with status
LEARN_MODE_STARTED - For
controllers

Application calls:
ZW_RemoveNodeFromNetwork(

REMOVE_NODE_STOP,LearnHandler)

LEARN_MODE_DONE - For controllers
ASSIGN_COMPLETE - For slaves

Protocol call
Callback with status

Figure 21 Node exclusion frame flow

Zensys A/S

Application Note: Inclusion/EXCLUSION Implementation

CONFIDENTIAL

Page 268 of 280

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

The following code sample shows how remove node functionality is implemented on a controller capable
of removing nodes from the network:

/* Call to be performed when user/application wants to remove a node from the network
*/
ZW_RemoveNodeFromNetwork (REMOVE_NODE_ANY, LearnHandler);

/* LearnHandler

*x Function description

*x Callback function to ZW_RemoveNodeFromNetwork

A L o o o o e e e o */
void LearnHandler(LEARN_INFO *learnNodelnfo)

{

if (learnNodelnfo->bStatus == REMOVE_NODE_STATUS_LEARN_READY)

/* Application should now signal to the user that we are ready to remove a hode.
User may still choose to abort */

}
else it (learnNodelnfo->bStatus == REMOVE_NODE_STATUS_NODE_FOUND)
/* Protocol is busy removing node. User interaction should be disabled */
}
else if (learnNodelnfo->bStatus == REMOVE_NODE_STATUS_ REMOVING_SLAVE)

/* Protocol is still busy, this is just an information that it is a slave based
unit that is being removed*/

}
else if (learnNodelnfo->bStatus == REMOVE_NODE_STATUS_REMOVING_CONTROLLER)

/* Protocol is still busy, this is just an information that it is a controller
based unit that is being removed */

}
else if (learnNodelnfo->bStatus == REMOVE_NODE_STATUS_ DONE)
/* Node is no longer part of the network*/

/* When done - stop the process with */
ZW_RemoveNodeFromNetwork (REMOVE_NODE_STOP, NULL);

bs
else iT (learnNodelnfo->bStatus == ADD_NODE_STATUS_FAILED)

/* Remove node failed - Application should indicate this to user */
ZW_RemoveNodeFromNetwork (REMOVE_NODE_STOP, NULL);

}
+

For the device that is excluded, the process is no different from an inclusion See paragraph 10 for
sample code.

Applications based on Controller libraries should most likely check which capabilities the application
should enable once the learn process is over. This includes reading ZW_GetControllerCapabilities.

Applications based on slave libraries should check the node ID returned to the callback function during
the learn process if this node ID is zero the device is being excluded from the network and the
application should most likely remove its network specific settings, such as associations.

Zensys A/S Application Note: Inclusion/EXCLUSION Implementation Page 269 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

11 APPLICATION NOTE: CONTROLLER SHIFT IMPLEMENTATION

This note describes how a controller is able to include a new controller that after the inclusion will
become the primary controller in the network. The controller that is taking over the primary functionality
should just enter learn mode like when it is to be included in a network. The existing primary controller
makes the controller change by calling ZW_ControllerChange(CONTROLLER_CHANGE_START,..).)

After a successfull change the controller that called ZW_ControllerChange will be secondary and no
longer able to include devices.

Controller that Controller that
initiate the is to become
controller change primary

Application calls:
ZW_ControllerChange(
CONTROLLER_CHANGE_START,
LearnHandler)

Application call:

Protocol calls LearnHandler with: ZW_SetLearnMode(TRUE, Cal Iback)
ADD_NODE_STATUS_LEARN_READY Transfer Presentation
(Signal to user that Ctrl is L///

ready to receive Nodelnfo frame)

Protcocol call Callback with:

Node Information Frame LEARN_MODE_STARTED

Protocol calls LearnHandler with
ADD_NODE_STATUS_NODE_FOUND

Protocol calls LearnHandler with

ADD_NODE_STATUS_ADDING_CONTROLLER Assign ID to node

Protocol calls LearnHandler with

ADD_NODE_STATUS_PROTOCOL_DONE Other Protocol Data

|

Application calls: ¥ -——-—————-—-—————_—- N ‘

- p ZW_REPLICATION_SEN Protocol calls ‘

ZW_ReplicationSend(. . ,Func eyt a2) -)
—Rep () },/ ApplicationCommandHandler with |
. p g Payload from ZW_REPL.._ SEND !
o _ ,
T T I / CMD_COMPLETE Application should hgane data |
| Protocol calls Func with: NPT T and respond with:

L ZW_REPLICATION_COMMAND_COMPLETE N ZW_ReplicationReceiveComplete

,,,,,,,,,,,,,,,,,,,,,,,,,,,, ‘

|

Application calls:
ZW_ControllerChange(
CONTROLLER_CHANGE_STOP, LearnHandl
er)

Change Status

Transfer end

Protocol call
Callback with status
LEARN_MODE_DONE

Protocol calls LearnHandler with
ADD_NODE_STATUS_DONE

Figure 22 Controller shift frame flow

Zensys AIS APPLICATION NOTE: CONTROLLER SHIFT IMPLEMENTATION Page 270 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

12 APPLICATION NOTE: ZENSOR NET BINDING AND FLOODING

Zensor Net Binding is the process of associating a number of Zensor Net Routing Slaves.

It is possible to bind up to 16 nodes to each other; using one arbitrarily chosen node as “Bind master”.
The bind master choses a random 16 bit Zensor Net ID. During bind, every other node receives the
same Zensor Net ID and a unique Zensor node ID. The Zensor node ID is in the range 1..16.

When creating a system of networked smoke detectors, the Zensor node IDs will not be used. In case of
fire, the first node to detect smoke issues a frame with the following properties

e Zensor beam
e Singlecast frame

e Destination address = broadcast

e Carrying a special Zensor Net flooding message

In all nodes receiving a Zensor Net flooding message, the following events take place:
1. Lock on preample; look for Start of Frame (SOF)

2. Look for Zensor start of Frame (ZOF)
Step 1 is identical to classic Z-Wave.
Nodes running firmware before Z-Wave v5.0 will interpret the ZOF as the first byte of the home ID.
Home IDs having the ZOF value as the first byte are reserved. Thus, there is no risk that any legacy
Z-Wave networks are influenced by Zensor Net traffic.
Nodes running Z-Wave v5.0 or later will recognize the ZOF value and resume preamble tracking
unless they are Zensor Net Routing Slaves. In this case, decoding goes on:

3. Look for header type = 4 (Zensor flooding)
(Nodes running firmware before Z-Wave v5.0 would skip interpretation here if it wasn't for the fact
that they never come here because of the home ID mismatch)
When carrying header type =4 content in a Z-Wave frame, the payload field carries a Zensor Net
header extension before the actual payload

4. Look up Zensor Net ID and the Zensor node ID in the Zensor Net header extension.
Filtering accepts the frame if the Zensor node ID equals the actuals node’s ID or the broadcast
address

5. Look up the loop token.
If the token is not in the recent list of tokens, the token is added to the list, the frame is forwarded and
a copy is delivered to the application.
If the token IS in the recent list of tokens, the frame is discarded.

Zensys A/S APPLICATION NOTE: Zensor Net Binding and Flooding Page 271 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

13 REFERENCES

(1]
(2]
3]
(4]
[3]
(6]
[7]
(8]
9]
(10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
(20]
(21]
[22]
[23]
[24]
[25]
[26]
[27]

Zensys, SDS10242, Software Design Specification, Z-Wave Device Class Specification
Zensys, DSH10086, Datasheet, ZWO0x0x Z-Wave Interface Module

Zensys, DSH10087, Datasheet, ZW0x0x Z-Wave Development Module

Zensys, DSH10033, Datasheet, ZM1220 Z-Wave Module

Zensys, DSH10034, Datasheet, ZM1206 Z-Wave Module

Zensys, INS10240, Instruction, PC Based Controller User Guide

Zensys, INS10241, Instruction, PC Installer Tool Application User Guide

Zensys, INS10245, Instruction, Z-Wave Bridge User Guide

Zensys, INS10029, Instruction, ZW0102 Single Chip Implementation Guideline

Zensys, APL10312, Application Note, Programming the 200 and 300 Series Z-Wave Single Chip
Flash

Zensys, INS10336, Instruction, Z-Wave Reliability Test Guideline

Zensys, INS10249, Instruction, Z-Wave Zniffer User Guide

Zensys, INS10250, Instruction, Z-Wave DLL User's Manual

Zensys, INS10679, Instruction, Z-Wave Programmer User Guide

Zensys, INS10236, Instruction,ZW0102 Development Controller sample application
Zensys, INS10579, Instruction,Programming the ZW0102 Flash and Lock Bits

Zensys, DSH10088, Datasheet ZMxx06 Converter Module

Zensys, DSH10230, Datasheet, ZM2106C Z-Wave Module

Zensys, INS10326, Instruction, ZW0201 Single Chip Implementation Guidelines
Zensys, SRN10793, ZW0102/2ZW0201/ZW0301 Developer’s Kit v5.00

Zensys, APL10512, Application Note, Battery Operated Applications Using the ZW0201/ZW0301
Zensys, DSH10856, Datasheet, ZM3106C Z-Wave Module

Zensys, DSH10275, Datasheet, ZM2120C Z-Wave Module

Zensys, DSH10857, Datasheet, ZM3120C Z-Wave Module

Zensys, APL10292, Application Note, ZW0102 Triac Controller Guideline

Zensys, APL10370, Application Note, ZW0201/ZW0301 Triac Controller Guideline
Zensys, APL10514, Application Note, The ZW0201/ZW0301 ADC

Zensys A/S References Page 272 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

INDEX
A
ADC_BuUf (ZWO201/ZWO030T ONIY) ..ttt et e et et e et e e et e e smse e e aeeesseeeeaeeeemeeeaeeeeanseeanneeannes 123
F O €= =TSSR 129
ADC_GetSamplingRate (ZWOT02 ONIY)cciiiiiieeiiiiiee ittt e st e e st e e seneee e e s esseeeessnseeeesnseeeesnnneeeas 128
5L 1o SRS 118
L 1o PSS 127
y N L [o1 { = To [| PSS PPPPR 127
L O) 3 SRS 116
ADC _ON (ZWOT02 ONIY).ttiiiiiitiie ettt e ettt e e et e e et e e e s eaa et e e s aaaaeeeeeasaeeeeansseeasasseeeesaseeeesasaeeesannneeens 116
LB O 1= =T o | o TSRS 122
ADC_SetAZPL (ZWO201/ZWO30T ONIY) ..eeneieeieieeeiie et e eteeeeieeeeeee s eeeseeeeseeeeseeeeseeeesneeesnseeeanseeenneeennes 124
ADC_SetResolution (ZW0201/ZWO30T ONIY)eeieiuieeeiieeetiee e eee e e eeeseee e ee e sneeeseeeesneeeeeeeenees 124
E N LS T=Y i I 1 =T USSR 126
ADC_SetThresMode (ZWO0201/ZWO30T ONIY) ..eeeiiiieiiieeiee ettt e e e e eesmee e e eneeeeeee e e 125
L O -1 o S SRS 116
E DO S (o] o F OO RPRRRRNt 117
APP_RFSEIUP.A5T .ottt e e e e e e e e e e e e e e e e e e eaabraaees 206, 207
ApplicationCommMaNAHEANAIET ... e e e e e e e e e e e e e snbraeaaeeeeaeanes 60
ApplicationControllerUpdate.........cooieei i 47,73, 179, 258, 259
ApplicationControllerUpdate (All controller Ibraries)..........cc.uvviiiiie i e 65
F Yoo 1171 1Te] o] 1 11 A APPSR PPPPR 56
F Yoo [Ter=T1Te] o] L1161 L PO PRPUPPPRR 57
ApplicationNOdelINfOrMationot e et e s e e 61
Y o] 0] To= 11T | =)| EERR 59
ApplicationRINOLIfy (ZWO30T ONIY)...coiiiiiiiiiiiiiee ittt et e e e e sbe e e s anbeeeeeaae 68
ApplicationSlaveCommandHandler (Bridge Controller library only)..........ccooiiiiiiiiiiiiieeec e 66
ApplicationSlaveNodelnformation (Bridge Controller library only)cccccooiciieiiiiiiee e 67
ApPPlICAtioONSIAVEUPAALEeiiiiiiiiiiee et e e e e e e e e e e e e aaaaas 199
ApplicationSlaveUpdate (All SIave lIDraries).........occuuiii it ereee e 64
F Y o] o] [Toz= 11T gl =11 { o | PP PPPRR 58
FNSTS=T00] o] (=T P T PP SPOU PP PPPROPP 252
C
LG oTo] o o] 1= PRSP 252
L0 [0 Yo (@ 1 1] o TSRS 142
L@ o T2 (T S 142
L0 o T 1 141
(@70 010 0= T o N o]] o ¢ o S 212
D
Do [oT=To I oY= | 0 i1 YRR 23
D10 1 o T)G USSR 212
E
LT o] [oT=To [T =) (= YRR 256
ENNANCEA SIAVE. ...ttt et e e b et e e b 177
EQUINOX EPSIlONS PrOGramMIETco..veiiiiiieiii ettt sttt ettt e e s st e e e enne e e e e seeeesnnneeens 22
EXIErN_€eP.NeX fil@o e 256
External EEPROM ...ttt e e e et e e st e e e s e e e e sana e e e s enae e e e nnreeas 37, 256
Zensys A/S Index Page 273 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

F
FCC complianCe test ... 206, 207
FLASH _APPL FREQ_OFFS ...ttt et e e e e e et e e e e e e eeanans 206, 207
FLASH _APPL _LOW POWER OFFSottt 206, 207
FLASH_APPL _MAGIC VALUE _OFFS.......o ettt 206, 207
FLASH_APPL_NORM _POWER _OFFS......ooiiiiiiiiieee ettt e e e s e ae e e e e e e s 206, 207
FLASH _APPL _PLL _STEPUP _OFFS ...ttt e e e ae e e e e e e e eeannes 68, 207
FLASH _APPL _RX MATCH _OFFS ...ttt e e e e e e e e e e e e e e neaanraaeeaaa s 206
FLASH_APPL_TX MATCH _OFFS ...ttt et et e e et e e e et e e s e nbe e e e e nbaeaeeennas 206
FUNC_ID_SERIAL_API_GET_CAPABILITIES......cc ottt 243
FUNC ID_SERIAL_API_SET TIMEOUTS. ...t e e e 243
FUNC ID_SERIAL_API_SOFT RESETooocioiiiiie e e e 244
I
1L @ I o 1o - TSR RR RO O PSPPI 208
[aTo [0S o] a W eto] gl (o] 1= OO 46, 260
INEEITUDL .. 36
INEEITUPE SEIVICE FOULINES ... e e e e e e e e e e e e e s e aareaeee e e e snnrsraneeaaaeeas 36
K
[T | SRRSO 252
KEIL _LOCAL _PATH oottt ettt e e et e e et e e e e et e e e et be e e e e nsb e e e e easbeeeeenbaeaeenreeeeennnes 212
= T [S 212
L
] o) = 1 F= T o 252
] | (= 252
(I (= T o - T TSR 61
o o7 1q o1 TP 255
M
MaKE fIlES......cco oo 211
(V[>T 0 g o) YA o] o i1 5 0T (o] o VAN PRSP 53
[T g gTo) Y = 1 =W 1 1= ST PPRPR 113
MEMOTYGEIBYLE ... ittt e e e e e ettt e e e bttt e e e nnbe e e e enbe e e e anbeeeeeannees 111
Y T=T g Te] Y= 1 I PRSPPI 110
MEMOTYPULBUITEI ...ttt e ettt e e et e e eabe e e e e nbe e e e e annees 114
MEMOIYPULBYLE ... et e e e et e e e e e e e abb e e e e e nb e e e e e annees 112
Y| = 7N SO 211
N
Node Information Frame............ooooiiiiiiii 61, 158
NON_ZERQO _SIZEottt e et e e e e e e et e e e e e e e e e aaabaaeeeeeeesesaaabraeeeeeesnnnbaranaeaaaeeas 32
NON_ZERO_START _ADDR ...ttt e e e e e e et e e e e e e e e e e aabaeeeeeaeeeeeanaabaeaaaeaas 32
(0]
(@] o] Te] aT= 1M ¥ ToxuTe] aT= 1114V 1 = To [FS PRSP 61
P
L 1N €1 OSSP OPPPR 209
L L L SO SUP PP 208
L 1 T RSP OPPPP 209
[T N U 209
Zensys A/S Index Page 274 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

1 L SRS 208
PIN_TOGGLEco ittt e et e e et e e et e e e e e ssee e e e ssseee e nsteeeeansbeeeeennseeeeasseeeeanseeaesannees 210
POWEI ON FESEL.. ..o 78,79
PrimMary CONTIOIIET...... .. et e e e e e e e e e e e e e e e e eeeas 39, 46, 47, 257
g (0o [UTox (] g TR (=) 10, 11, 58, 229
PVT and RF regulatory MeasUrEmMENTSccoiiiiiiiiiiiiieiie ettt e e e e e e e e e e e e e s eaaraaaaae e s 26
PWR_CIK_PD (ZWOT02Z ONIY) 1.eeiiieiiiiiie ittt ettt e sttt s et e e s sttt e e s amste e e s anbeeeeenteeeesannteeeeannteeeannes 131
PWR_CIK_PUP (ZWOT02Z ONIY) .eetieiiiiite ettt sttt e e sttt e e et e e s entte e e e annte e e s ennbeeeeenseeeennees 131
PWR_Select CIK (ZWOT02 ONIY)vviieeiiiiiee ittt e ettt e ettt e et e et e e e et e e e et ae e e s enabeaesanbeeaeannrseesnnres 132
PWR _SetStopMode (ZWOT02 ONIY)...eeiiiiiiie it e ettt ettt e e e e e s tae e e e e e e s enbee e e enbeeeennreas 130
R
S 0] LTSN oW =S RE 99
RSy (U5 T (01U (= T 91, 95
L (=T | =Y o Vo SRS 206, 207
RF match capacity array VAIUESoo e e e e e e e e e s 206
LT = 1] o TR 206
RF transSmit POWET [EVEIS ...ttt e e e e e e et e e e e e e e e s enrareeeesaennnes 206, 207
o101 g To K] £= 1= PRSPPI 260
ROULING SIAVE ...ttt e ettt e e e e e s e b e et e e e e e e s aaasaeeeaeeeeeaasstaaeaaeessannsntaneeaaaeeas 177
RTCTIMEICIEAE ... 143
RTCTIMEIDEIELE ... 145
RTCTIMErREAd.........ccooo 144
RXMALCh ... 206
S
SerialAPI_ApplicationNodelnformatione e 62
SerialAPI_ApplicationSlaveNodelnformationcoooiiiiiiiii i 67
T . SRS 52, 73, 260
SIEEP MOAE... .. et e aaabeaeeeaaan 78, 130, 140, 141
Static Update CONTIOIIETeeeiii e e e e e e e ae e e e e e e e eaanes 45, 47, 51, 257
] (o] o 1 4o To LY PP PPPRR 80, 130
] O OSSPSR 51,73
S U O 1B =T oY= 46, 52
SUC/ISIS NOGE ...ttt e e e et e e e et e e e e bt e e e e eaabeeeeeesseeeeeasbaeaesantaeeeeanbsaessnbaeeeeaassenaenns 177
T
I 2T 36
I8 27 e 36
I 01 22 36
I 01 36
THMEICANCEN ...ttt e ettt e e e e e e ettt beaeeeeeeeeeeaabbaaeeeeeeesaasstaseeessaansbeaneeeaeeeaaannns 105
BT 2T = o SRS 105
QLI LT 571 o SRR 104
LI L@ I | USSP 212
TRIAC Nt oottt e et e e st e e e et e e e aa e e e e eaase e e e e aasaeeeeansseeaeanssseassaeeesansaeeeeanreeens 101
TRIAC Off et e e e ettt e e e et e e e e ea e e e e e e aatae e e e s saaeeesaasaeeesansseeesaeeeeaansaneeeanreeens 103
TRIAC _SEtDIMLEVEL........eeiiiiieeiee ettt e e s e e e st e e e e s asae e e saasaeeesaasseeassaeeesannreeens 103
LD 1.0= L (e o TR 206
LD, (e Te Y5 a0 = T =0 1= R 206, 207
U
UART_ClearRx (ZWO201/ZWO030T ONIY)...eeiiiiiiiiieiiiieie et see e st e ettt e e e st e e e e nteea e s snntee e e snnseeeeeneas 138
UART_ClearTx (ZWO0O201/ZWO30T ONIY) ...eeiiiiiiiiieiiiiiee et e ettt et e st e e e e ntee e e s ennaea e e enneeeeeenees 137
UART_Disable (ZWO0201/ZWO30T ONIY)....eiiiiiiiieieiiiiee et e sttt e st e ettt e e e st e e e entaeeessnnteeeesnneeeeseseas 137
Zensys A/S Index Page 275 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

UART_Enable (ZW0201/ZWO030T ONIY)eieiieeeiiieeiie et et e et e e e seee e st e e saeeesseeesneeesmneeesmeeeenneens 137
L B [0 USSR 133
UART_Read (ZWO201/ZWO30T ONIY) ..ceiteieiieeeiiiee ettt ettt ettt st e b sbe e e sneeesabe e e smneeeneenns 139
L0 o B C=Ted = Y (USSP 134
UART _RECSTALUSttt e e e e e e e e e e e et e e e e e e e e eeabaaaeeeee s nbnbaeeeaaaeeas 134
0 S IS T=T a o] =1 (Y PRSPPI 135
UART _SENANL ...ttt ettt e et e ettt e eh et e st e e e b et e sttt e be e e st e e be e e sne e e naneeaa 136
LN o IS 1Y o To | LU o o TSSO 136
N IS T=T 0o 1S =1 (U1 PSR PUPRR 135
L0 RS T=T 0 o s USRS 136
UART_Write (ZWO0201/ZW030T ONIY) «.eiieieeiieeeeiiee ettt et e e seee e e saeeesseeesaaeeesmeeeanneeeanneeeanseeeneeans 138
UNINItIAIZEA RAM DYLESot e bt e e et e e e e b e e e e e aanes 222
w
LA E= 1 (e T (o o P PPRRRT 88
LT AU L =y 0 1o To [T PRSI 80
L AT AT L g To o = O PP P PP PPPPPPUPPPPPT 80
z
ZIMA206 MOAUIE ...ttt ettt ea e e b bt e s e et e e e ene s 22,229, 230
ZIMA220 MOAUIE ...ttt h et a e sttt e bt e et e e bt e e st et e eae e e st e an e e s s nes 229
ZW_ADC_BUFFER_DISABLE (MACIO) ...ceitiieiiiieiieeaiee et e eeteeeeeeeeaseeeseeeeseeeeneeaesmaeeesneeesnseeasnseesneeennes 123
ZW_ADC_BUFFER_ENABLE (MACI0)ceitiieiiiieiiie ettt st e e sete et eestee e steaesneeesnneeennseesnneeenes 123
Z\W _ADC_CLR_FLAG (MACI0)teieiiiieitii ettt ettt e sae e et e e neeesmtee e neaesmeeeeaneeesnneeaneeeenneeenneeannes 127
Z\W_ADC_GET_READING (IMACI0O) -...eeiteteiuteeeatiieateeaateeeateaeaueeeameeeaaseeeaseeanaeeeanseeaaseeeanseeanseeeanseeeaneeesses 129
A AT\ L@ N I (1 =T o) LSRR 118
Z\W_ADC_INT_DISABLE (IMBCI0O)utteitieeitiee et e aieeeaeeeestteeesteeesaeeeameeeeamseeaseeesseeesneeeanseeenseeeanseeennesannes 127
Z\W_ADC_INT_ENABLE (IMACTO) ...cctttiitiiiitit ettt ettt ettt sttt e st e e enn e e snee e 127
p A A B O @] o i (1Y =T o) RSO 116
p A A B L @]\ (1 - Vo o) RS SS 116
Z\W_ADC_RESOLUTION_12 (MACTO)......eeiiteieitiieiitee ettt estte ettt ettt ettt ane et esne e 124
Z\W_ADC_RESOLUTION_8 (MACIO0).....cuttiittiiitiieiiie ettt ettt nns 124
Z\W_ADC_SAMPLE_RATE (IMACIO) .. eeititiitiieiteeeaieeaeeeesteeeaeteeesseeeateeesneeeaseeesseeesseeeanseesnseeaanseesnneeenses 128
Z\W_ADC_SELECT_ADT (IMACIO)utttitieeeuieeeateeeateeaateeeamteeesseeeanseeaaseeesnseeaaseeeanseeeanseeanseesaseeesnseeeaneesnses 122
Z\W_ADC_SELECT_AD2 (IMACIO)utttiuieeauieeeateeeateaaateeeaeeeeaneeeanseeaaseeeanseeaaseeeanseeaanseesnseesaseeesnseeesneesses 122
Z\W_ADC_SELECT_ADS (IMACIO) ... uttteueteiuteeaateeeaeeaaateeeaeeeaauseeaneeeaaseeeamseeaaseeeanseeaanseesseeaaseeesseeeaneesses 122
Z\W_ADC_SELECT_ADZ (IMBCIO)utttiueeeaueeaaaueeeateeaateaeaeeeaauseeanseeaaseeeaseeaaseeeanseeaanseesseeaaseeesseeaanseenses 122
Z\W_ADC_SET_AZPL (IMACI0O) ... uteteiteeaauieeauieaeaueeeaeeaaateeeateeeauseeameeeaaseeeaseeaaseeeamseeaanseeanseeaaseeeanseeeasesannes 124
ZW_ADC_SET_THRESHOLD (MACIO)....cciittteiteieiiiieaieeeatieeeiee ettt st e e saee e sbe e saneesmbe e e snbeesneeenaee 126
Z\W_ADC_START (IMBCIO) ..ttt ettt ettt ettt sttt et sbe e s s e e s bt e e sabe e e be e e sabe e e bt e e sabeeeabeeesmbeesareeannes 116
p A A B L S N O] (1= Tor (o) IR 117
ZW_ADC_THRESHOLD_LO (MACIO)uetiittiiiteieitte ettt esne e e 125
Z\W_ADC_THRESHOLD_UP (MACI0)......eiiittiiitiieiiie ettt ettt ettt sttt e e 125
ZW_ADD_NODE_TO_NETWORK (MACFO)ccutteitieiiiieitei ettt ettt sne e 149
A AT o (o [\ ToTe L= o] VL=t T S 149, 262
ZW_ARE_NODES_NEIGHBOURS(IMACIO) ... teteiueeeetieeatieaeaiieeaeeeaeseeesteeasseeesneeeesnseesseesaseeesnseeesnsessnes 170
Z\W_AreNOdESNEIGNDOUIS.........ooiiiiiii ettt e e e s e e s nneeee s 170
ZW_ASSIGN_RETURN_ROUTE (MAGCI0)ceeiteieiueeeaiieeauieeeateeeaeeeasteeeseeeasaeeesmeeeeanseesseeenseeeanseeeaneeeenes 162
ZW_ASSIGN_SUC_RETURN_ROUTE (MACI0O)......eeeeteteiuteaaiueeeaeeeaaieeeaieeesaeeeseeeeameeeseeeesseeeenseeesneeeanes 177
ZW_ASSIGNREIUMMROULE ...ttt ettt e e sn e e s anee e s 162
ZW_ASSIGNSUCRETUINROULEcouiiiiiiiiiiiie ettt e st e e st e e s snse e e e snnseeeeansseeeanneeeens 177
Z\W_CLOCK _CMP (IMBCIO) ...utteieeittiieeeeitiee e e siteeee e sttt e e e sttt e e e sttt e e ssteeeesansaeeesansseeesansseeaesnnseeeesnseeeansneeens 142
WA A O 0 L0 G €1 = I {1/ F= Vo7 (o) RSSO 142
N A & 0 101 Q] = I (1= Tox o) ORI 141
ZW_CONTROLLER_CHANGE (MACIO0)....cccuttiitiieitieetit sttt ettt sttt 153
A A 0o g1 (o] 1Ty 0 =T oo = RS S 153, 270
Zensys A/S Index Page 276 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

ZW_CREATE_NEW_PRIMARY _CTRL (MACIO).....cetteiiiiiieiiiiiieeiiiieeeseiieeeessseeeessnseeesssneeeesnssseeessnnseens 181
ZW_CreateNEeWPTIMAryCIrl ettt e et e e ab e e snnneee s 181
ZW_DEBUG_CMD _INIT (IMBCI0) ... ettteiitieeeiiteeiee ettt e esiiteeesateeeeesnseeeaessaeeeesansseeesansseeessnsseeessnsseeessnneeeess 205
ZW_DEBUG_CMD_POLL (MBCIO) ..eeiiittiieeiitieiee ettt e eeieee e e sttt eaesteeeaessaeeeesansseeessnsseeesansseeaesnsseeessnnseeesn 205
A AT T =1 = 1 T 1Y O SRS 139
ZW_DEBUG _SEND _BYTE ... oottt ittt ettt ettt s e e e s s e e s anst e e e e anseeeeeannseeeeansaeeeesnneeeens 140
Z\W_DEBUG_SEND _NUM ...ttt ettt sttt e e s st e e s st e e e ansee e e e ansseeeeanneeeesnneeeens 140
ATV 1= o 18 o | g T OO PPPPR 205
pA A B L= o T o] 2o | TSSOSO 205
ZW _DELETE_RETURN_ROUTE (MACI0).....uuiiiiiiiiiie ittt e ettt e e ettt et s st e e e e e s e e e snnneeesennneeas 163
ZW _DELETE_SUC_RETURN_ROUTE (MAGCI0O) -...eeetieeeiiiieieieaeae e e eeiie e e e e e e e eea e e e e e smeneeeeeaeaeeanns 178
ZW_DeleteRetUrNROULE ...ttt e e e e et e e e e e e e e e neneeaeeeeeeaannns 163
ZW_DeleteSUCREIUMNROULE......cooi ettt e e e e e e e e e e e e e e e e e e neneeeeeeeeaannes 178
p A A = =t o S LY VLl I (1 =T o) S 115
AT AT ==Y o] o) o 1] 1 T 115
F A A = Y = T S O L @ {1V =T o) RS 180
AT R =g =1 o] 1= 35 1 LSS RSPP 173, 180
ZW_GET_CONTROLLER_CAPABILITIES (MACO) ...cccuvtitieiiiiiee e ettt e e 157
ZW_GET_NEIGHBOR _COUNT (MACIO) ...uttiieeiiiiieeiiteie s eieeeeeesitteeestteeeesnseeeessnseeeessnsseeeesnnseeeesnnneeeas 169
ZW_GET_NODE_STATE (IMACIO) ..eeiiiittiieeiiteeieeeetieeeeseittee e e ettt e e e stae e e e aasaeeesessaeaesassaeeessnsseeaessseeessnnseeean 158
ZW_GET_PROTOCOL_STATUS (MACIO)iciiiiieetieeieeeeeeatieeeeeaeaesasnteeeeeaeesseansteeeeeaaassasasnssseeeeasssannnnes 87
ZW _GET_ROUTING _INFO (IMAGCIO) .. uuuttiieeieeeiaeieiiieteeaeeesesitteteeaaesssastnteeeeeaesesaasnssseeeeaassssaansssenenaeeeeanses 172
ZW_GET_SUC_NODE_ID (MAGCFO). ... uutteiteiaeeaaaateeeeeea e e e et eeaaaaaeaaatseeeeeaaaaeaaanneeeeeaeaeeaaaanenseeeeaaeaaannes 173
ZW_GET_VIRTUAL_NODES (MAGCIO)eettiiitiiieeiitiieeeseiteeeesieeeeesiteeasssaaeassnssaeeesssssseessnsseeesssseeessnsssees 190
ZW_GetControllerCapabilitieso i e e e e e e e e e e e e e e e anne 157
p A A C =11\ =TT | o] o o1 O 0T o | SRS 169
ZW_GEetNOAEPTOOCOIINTOvviiiiiei et e e e e e e e e e e e e e e e eeabaeeaeeeeaeannes 158
ZW _ GEtPIOtOCOISTAtUS ...ttt e e et e e e e e e e et et e e e e e eeeesesbaeeeeaeeeaaaanes 87
y AT € 1= (2 (o] 0] 119 | L] (o XSO RPPRR 172
p A A 1= 651010\ To [= 1 I TSRS 173
A A 1= 4V (U= 1N oo [SR 190
ZW IS _FAILED_NODE_ID (MAGCIO).......uuteiiiiuueieeieieeieeeiteee e ettt e e sttt e e e s eaaaeaeeensaeeessnnseeassnseeasassaeessenseaeas 165
ZW _I1S_NODE_WITHIN_DIRECT_RANGE (MaACIO0)......cciiiiiiiiiieee e eeeiieiee e e e e ee e e e e ssenaeeeee e e e e 198
ZW _IS_VIRTUAL_NODE (MACIO)....ccciitttieeiiteeeeeiaiteeeesettteeesasseeesssseeessssesessnssseessassseeesasssesesssssseessnsssees 189
ZW _IS_WUT_KICKED (IMACI0)......uttiieiiiiieeeeiieieeeeiteeeestteeaesteeeaesssaeeessnseeeessssseaesansseeasasseeeesnssseeesnseeeens 133
AT I =] =1 Yo | o T USSR 165
ZW _ISNOdeWithinDir€CtRANGE.co ettt e e e e e e e e e e e e e s neneeeee e e aennne 198
A A A =]]2 0= Y3 (o SRS 166
A AT EoX VT (1= 1 [Yo [189
ZW_LOCK_RESPONSE_ROUTE (MAGCTO)ueiiiitiiieeiitiiie e eieie e ettt e sttt s sttt e e s snieee e e snteeeeesneeeessneeeaeans 99
AT o Yot (o TV P PPPRRN 99
ZW_MEM_FLUSH (IMBGCT0)tetieiuieiee et tee ettt sttt ettt e e e sttt e e e st e e e st e e e snneeeesanseeeesansaeeesnneeeens 115
ZW_MEM_GET _BUFFER (IMACIO) ...ceiiiutiiiieiiiiie e iciteee ettt s ettt e ettt e et e e et e e s s e e e snnseeaesnssaeeesnnneeean 113
ZW_MEM_GET _BYTE (MACIO)uvtiiieiiiiii e ettt ettt e ettt e e ettt e e sttt e e s st e e e e sata e e e s snnseaaesnsneeaesnssaeeesnneeaeas 111
ZW_MEM_PUT _BUFFER (MaGCIO)......cc.utiiiiiitiiie e ittt eette e e ettt e e sttt e st e e e saaae e e s easaeaessnnneeaeanssneesanneaean 114
ZW_MEM_PUT _BYTE (IMACI0)......uttiiiiiiiieeeiieieeeseiteeeeseiteeeessttaeeessssaeeassnsaaeasassaeessnssseeesansseeesassseeassseeeess 112
ZW_MEMORY_GET _ID (MACTO) ...vveieiiiiieeeiieiee e ittt e eeittee e e st e e e sstaeeassnssaeaesnsaeaesnssseeessnsseeesanssneesannseeess 110
ZW_IMEMOIYFIUSH ...ttt a bttt e s et e e e aabe e b b e e e e s aanneee s 115
ZW_NODE_MASK_BITS_IN (MACIO)eiieiiiiiieeiiiiieesiieeeeeeieee e e sttt e e e siteeeesnseeeessnseeeassnsseeeesssseeesanneeenn 147
ZW_NODE_MASK_CLEAR (IMBCI0)uttiiieiiiiiee ettt e e ettt e sttt e e staee e e snteeeesansseeessnsseeessnnseeaesnssneeesnnneeenn 147
ZW_NODE_MASK_CLEAR _BIT (MACI0) ...iitttiieiiiiieeeeiiieeesieeee e sttt e e sseteeeessssaeeessnnseeessnseeeesssaeeesnnneeens 146
ZW_NODE_MASK_NODE_IN (MACFO)cetiiteiiieiitiiiee ittt e sttt e sttt e siteeaesnseeaessnseeeessnsseeesaneeeens 148
ZW_NODE_MASK_SET_BIT (MACIO)etteiiiiiieeiiieie ettt e ettt e st e e st eessnnseeeesnneeeeesnnneeean 146
ZW_INOAEMASKBISIN ...ttt ettt e e e sttt e e s bt eeennee e e e s ennneee s 147
ZW_INOAEMASKCIEATceieieiie ettt ettt ettt e e s st bt e e s nne e e e aabn e e e e anneeeesanneeeens 147
Z\W_INOAEMASKCIEAIBIL ... ettt ettt e e st e e st eeseneeeesenneeee s 146
ATV N\ T Yo 111 =3 (N o o =1 o SRR 148
Zensys A/S Index Page 277 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

ZW _NOAEMASKSEBILt e ettt e e e e e e e e e e e e e e e e e e e neneeeeeeeeaaannn 146
A A o | SR SUPRR 69
A A O]I {1V =T) S SRSPUPRR 69
ZW_PRIMARY CTRL (IMACIO) ...ctttttttiieeiiiieeeeietee e sttt e e stteeaesteeeaessseeeesssaeeesansseeesansseeesansseeesansseeesnnsseeess 166
ZW_PWM_CLEAR _INTERRUPT (MACIO)euiiiiiiiiieeiiiiiteeeieiee e sttt e e siteeeesneaeeessnseeeessnnseeaesnsnneeesnnneeens 109
ZW_PWM_INT_ENABLE (IMBCI0)eitiitiieeeiitiit ettt stte ettt e e st e e e s enne e e e s ansneeeeannneeeeanneeean 109
Z\W_PWM_PRESCALE (MBCI0).....uttiiiiiiiieeeittiee ettt ettt te ettt e e s sttt e e e st e e e snsteeeesnseeeesanneeeesansneeesaneeeeas 108
N AT T Y ST = WU (V= Tor o) RPNt 106
A A Y (O o= T [(=T 4 U o) SRR 109
ZW _PWMENGDIEeoiiiieiie ettt ettt e ettt e ettt e e et e e e et e e e e saa e e e e sssaeeesansseeesansseeasseneesannreeens 109
ZW _PWMPTESCAIE ..ottt ettt oo ettt e e e e e e e teeeeee e e e e e nsneeeeaeaeeaaannnneeeaaeeaaaannns 108
A A T S Y=Y (1] SRS 106
ZW_PWR_CLK_POWERDOWN (MaCIO)ccutviiieiiiiieeieiiieeessiteeeessieeeessseseessssaeessnssssessanssseessssseeessnssees 131
ZW_PWR_CLK_POWERUP (IMBCI0)......cettiiiiiiiteiiiiiteeeiieeeesteeeaestteeaessaeeeesassseeessnsseeassnsseeeessseeessanseeen 131
ZW_PWR_SELECT _CLK (IMACIO) ...ettiiuttiieeiieiieeeeeieeeessittee e s sttt e e e sntteeaesnsaeeeesnseeeesansseeesansseeessnsseeesannseeess 132
ZW_PWR_SET_STOP_MODE (IMACIO)....ccciituttteiiiiieeeaiteteeaieeeaesieeeaessseeeesansseeesasseeesansseeessnssseessnsssees 130
ATV = 1 Te (o o o PSSP PPPRRN 69
AT S NN T @Y (1Y = Tox o) PP PPPRN 69
ZW_REDISCOVERY_NEEDED (MACIO) ...citteiieitiieeeeitiete e eeieee e eittee e e steee e e staeeeesnteeesssnteeeessnteeaesanneeeeeans 72
ZW_RediSCOVEIYNEEAEA.eiiiiiiiee ittt e e e e e e et e e e e e e e e e s nenaeeeaaeeeean 162, 177, 260
Z\W_RediscoveryNeeded (Not Slave and Bridge Controller Library) ... 72
ZW_REMOVE_FAILED _NODE_ID (MACIO)eetiiiitiiiieitieiee sttt e setee e e e ettee e e stree e e sssaeaesennaeaesnnsseeassnnneeas 164
ZW_REMOVE_NODE_FROM_NETWORK (MACIO)uvviiiiiiiiieieiiiiieseiieeessieeeeesseeeeessnneeeesnnnaeeasenseeas 151
ZW_RemOVEFAIIEANOAEIDo ettt e e e e e e s ae e e e e e e e e e neneeeaeeeeaannn 164
ZW_RemoVeNOdEFTOMNEIWOTKuceeecee e e ae s 151, 267
ZW_REPLACE_FAILED_NODE (IMACIO).....cttttteiitiieteieiiteeessteeeeesiteeaesseeeeessseeeesassseeessnsseeessnsseeessnsssees 166
AT AV =) 0] = Te= =1 (=Y | LT L 166
ZW_REPLICATION_COMMAND_COMPLETE (MACFO).....ccctvtiieiiiiiieiiiieeeseiieeeesieeeeesineeaesnnnaeeeseneeeas 161
ZW_REPLICATION_SEND_DATA (IMACIO0)uetteiuieieeeitiiieeeaieetaesiteeeestteeeessnteeeessnnseeeesnseeeesnseeeesanneeeas 160
ZW_ReplicatioNRECEIVECOMPIELE........uiiiiiiie et e e e e e e e e e st e e e e e s aeannnes 161
AL S =T o] o= 14 o] 0 1S T=T o To [USRI 160
ZW_REQUEST_NETWORK _UPDATE (MaCIO)ccceiiitiieeeiitiieeeeeieee e e ettt e e e steee e e eetseeeessnreeaessnvaeeessnraeaaeans 73
ZW_REQUEST _NEW_ROUTE_DESTINATIONS (MACIO)uvtiiiieeeiiiiiiiiiieee e e e eeieeeee e e e e e seeneeeeeeaae e 197
ZW_REQUEST_NODE_INFO (MACI0) ...uuutiiiiiiiiieiiiiieeseiiteeeeseiteeeeasiteeessnteeesennseeassnnsaeaessnsseeesensses 179, 199
ZW_REQUEST_NODE_NEIGHBOR _UPDATE (MACIO)....ccccuuiiieiiiiieeieiiieeessiteeeesieeeeesnneeeesnsnneeesennneeas 171
ZW_RequestNetWorkUpdate 65, 177, 180, 259, 260
ZW_RequestNetWorkUpdate (Not Slave Library) ... 73
ZW_RequestNeWROULEDESHINALIONSuiiiiiiiiiiiii s 197
ZW _ReqUESINOTEINTO ... e e e et a s 179, 199, 263
ZW_RequestNodeNeighborUpdate.cooiii i e e e e e e e e ennnes 171
ZW_RF_POWERLEVEL_GET (IMACIO)....ceiiiittiiieiitiiieeeitiite e eeiieee e sttt ee e sttt e e e smteee e s snteeeessmteeeessbeeeessnneeeeeanes 71
ZW_RF_POWERLEVEL_REDISCOVERY_SET (MACI0)......cuttiiiitiiieeiiiieeeeiieee e sieee e sieee e e eieeee e snneeeeeens 75
ZW_RF_POWERLEVEL_SET (MaGCIO)ccciicttieeeiitiieeeeetieee e ettt e e e sttt e e e eataeeessabaeaessvaeeasssseeaesassasaesasseeaenns 70
ZW_RFPOWEILEVEIGELttt ettt e e ea et e e e et e e e et e e e e st e e e e abeeeaeaans 71
Z\W_RFPOWereVelIREAISCOVEIYSELeeiiiiiiiiie ettt et e e st e e e seeeeeanes 75
ZW _REFPOWEILEVEISEL ...ttt e e e e e et et e e e e e e e et e e e e e e e e e e aanneeeeaeeeeaaannes 70
ZW_RTC_CREATE (MACIO)....uetiiiitiiiieiiiieeeesiteeeeeteeeesstaeeesasseeeesssseeeesassseeesansseeesasseeeesasseeeesassseesnssseeens 143
pA A O B] = I = (1Y =Tl o) RSO 145
F A A O =7 AN B I (Y= Tox (o) RSSO 144
Z\W_SEND_CONST (MAGCTO) ...eeeeeiuttiieeiitiit e ettt e eeiteee e e sttt e e e steeeaessaeeaesssaeeesansseeesansseeesasseeeeassaeeenssseeens 100
Z\W_SEND_DATA (IMACIO) .. uttiteeitiieeeeteteeeatteeeestteeeesatteeaesasteeaesasteeaesasseeaeesnsaeaesansaeeesanseeeeeansaeesanseneesanns 91
ZW_SEND_DATA_ABORT (MAGCI0)......tteeieiitiieeeeeiiieeeeeteee e eeteee e e st ee e e ateee e e smteeee s snbeeeeesseeeeessseeessnsseeeeanes 99
Z\W_SEND_DATA_META (MAGCI0O) ...ceetiutiieeeitiiee e ittiee ettt e e eiteee e e atteee e e sttee e e sbeeeeesbseeeesaseeeeeeanseeaesanneeesanes 95
ZW_SEND_DATA MULTI (IMACIO) ..eeeiiutiieeeitiie e e ettt e e eettee e e e ettt e e e sataee e e sabaeeaesbaeaeessseeessasseeaesassaeaesanseeesanns 97
ZW_SEND_NODE_INFO (MACIO)....ccicicttiieeiitiiieeeetteeee s ettt e e e steeeeesteeaessaseeaesssseeeessssaeeesassaeaesssaeaesansseesanns 81
ZW_SEND_SLAVE_NODE_INFO (MACI0)uutiiiiiiiieeiiiieee ettt e eete e et e e sare e s eatea e e anvaeasesnsneaeeennneas 185
Z\W_SEND_SUC _ID (IMBCI0) ...etieiiuiiieeiiiiieeeeiteteestteeasstseeessasseeaesasseeeesassaeeesassseeesansseeesasseeesansseeesnsssneens 176
Zensys A/S Index Page 278 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

ZW_SEND_TEST_FRAME (IMACIO).......uttieiiitiieeeiitieeeeestieeeeestteeeesssteeeesstaeeesssaseessasseeessassseessasseeesssssesessnes 82
AT S T=1 o T 0o] (USSR 100
p AT S T=T g T | D= | = TSROSO PPURRRRNt 91
ZW_SeNADAIAADON. ..ot e e e e e e e e e e e e e e e ee et ——e—eeaaeeeaabarraaaaaeaaaaaans 99
ZW _SeNADAIAMETAoooiiiiieeee aarbaraeaaaeeaaaaanns 95
B AT S T=TaTe D= = 1 U TP PPPPRR 97
AT RS T=TaTe [N\ [oTe 1= a0 4 4= 1 o] o I PP PPPPR 81
ZW_SeNASIAVEDALA ... e e e e e e e e ——aaaeeeaaa—aeaaaaeeaaaanans 183
ZW_SendSIaveNodelNformationooi it 185
ZW _SENASUCID......coiiiieeiie ettt e et e e et e e e e te et e e seaae e e e seasaeeesassseeesansseeeesnsseeesssaeeesannrneens 176
AT S T=T o To I = TS] (= o = SRR 82
ZW_SET_DEFAULT (IMACIO) ...vetiiitiiieeiittiee e sttt e settteeessaseeeessssaeeassssseeessnssseassssaeeesnssasessnssseeesnnsseean 159, 195
ZW_SET_EXT_INT_LEVEL (MAGCIO)......uutiiiiiiiieeieiiie e e eite e e ettee e e sttee e s sttee e e ssstaeaessnsaeeessnsaeeessnsanaesansseesanes 90
ZW_SET_LEARN_MODE (IMBCI0)ciiiiuttiteiiiiiteeiiiieeesstieeesstteeesanseeeeasnseeaeaenteeesannsaeaeaansseessansses 155, 194
ZW_SET_PROMISCUQUS_MODE (IMACIO) ...eeiiitiiieeiitiieeeeaiteeeessieeeeesteeeaesnseeeeessnsaeeesanseeeessnsseeessnsseeesans 76
ZW_SET_RX _IMODE (IMACIO)ceittitieitiiteeietieeeeeatteeaessuteeeessnteeaasstseeessasseeaesasseeassassaeeesansseeessnsaeeessseeeesanns 77
ZW_SET_SLAVE_LEARN_MODE (MaGCTO)eetiiiiiiiieiiiiiee ettt st a e e 186
ZW_SET_SLEEP_MODE (IMACIO) ...ceititttiieiitieeeeaetieeeeesiieteeeauteeeeesteeeeeataeeessseeeeesasseeessanseeeesanseeeesanseeesanes 79
ZW_SET_SUC_NODE_ID (IMGCIO) ...cceiuttiieiitieiteeeieeeeeaiteeaeatteeaeaiteeaesaaeeeesansseaessnsseeessnseeeesnseeeesanneeess 173
ZW_SET_WUT _TIMEOUT (MAGCFO)ciutieieiiitiieeeeieee e ettt e e ettt e e st e e e staaeaesssaeaesessaeeessnsseeesanssneesennneeean 132
ZW _SEtDEFAUIL ... e e e e e e naaaaaas 159, 195
ZW_SetExtIintLevel (ZW0201/ZWO030T ONIY) ..oeeiiieiiee ettt e et e e et e e e e sareeaeenes 90
ZW_SEtLearNMOTE.c.ueeieeeciiiee ettt e e e e e et e e e s s e e e s nsnte e e e ennaeeeeanraeas 155, 194, 262, 267
Z\W_SetPromiscuousMode (Not Bridge Controller Ibrary)...........ooceeei e 76
ZW_SetRFRECEIVEMOUE ...ttt oottt e e e e e e et e e e e e e e e e e e nn e e e e aaaeeeaaannneaaeaeaaannes 77
ZW_SetSIaVELEAMNMOUEoeiiiiiiiieee et e e e et e e e e e e e et e e e e e e e e e eeabareeaeeeaaannes 186
ZW _SISIEEPIMOUE......coo it e e ettt e e e e e e et e e e e e e e e e e e ebabaeeeaeeeeeabarreeaeaeaaaaanns 78
A A S 1= 651010\ Yo 1= | SR 173, 180
ZW_SetWutTimeout (ZWO0201/ZWO30T ONIY) ...eeiiiiiiiieiiiiie e 132, 133
ZW_SLAVE_SEND_DATA (IMBCIO0) ..eeiiitiieeiitite ettt ettt ettt e e sttt e e sttt e e sneeeeesanseeeesansneeeeansneeeeanneeesn 183
ZW _SLEEP (IMACIO) .. ittiieeitteee ettt ettt e ettt e e e ettt e e e st e e e s bb e e e e ebbe e e e e eabeeaesastaeaesanbaeeesanbseeeessaneasasseeaeanns 78
ZW_STORE_HOME_ID (MAGCI0O)......eeieiiiiiieeitiieeeieiteee e sttt e e e sttt e e s satee e e e etae e e e sasaeeesssseaesasnseeesansseeasanneaess 193
ZW_STORE_NODE_INFO (MACIO) ...ccicutiiieeiiiiieeeiteee e ettt e e sttt e e setaee e e seasaeaeseasaeaessasaeaessnsseeasansseeesannseeesn 192
AT S (o] =Y o] 12T 5 SRR 193
AT S (o] =] Lo T =1 g USSR 192
ZW_SUPPORTOI600_ONLY (IMACIO) ...utvieeeiittiieeeeiiieeeeeiteeessteeeasssseeeessssaeeesassseeesansseeesssseeessnssneessnnsseenn 196
ZW_Support96000nly (ZWO201/ZWO30T ONIY)....ueeiiieiiiiiie ettt e e s e e seneeeesnnneeees 196
ZW_TIMER_CANCEL (MACIO)ciiuttiteiiiiiieeiittieeeseiteeeesetteeeesaseeeeesssseeeesanseeeesansseeesansseeesasseeeessseeeesnsseeens 105
ZW_TIMER_RESTART (IMBCI0) ... utttiteitiiie e ittt e ettt e ettt e e e sttt e e e sttt e e e snsaeeesnsaeeesansseeesansseeesannseeaesseeeens 105
p A A B Y= S N B (1= T o) RS 104
ZW_TRIAC_DIM_SET_LEVEL (MAGCTO)ciittttiiiiieie ettt eeieeee e ettt e sttt e st e e s eneeeeessnnseeessnnneeeesnnneeean 103
ZW_TRIAC_INIT (IMBCIO) ..t ttteiee ettt ettt ettt s et e sttt e e sttt e e e ante e e e sttt e e e anseeeesnseeeesnnseeesaneeeess 101, 102
ZW_TRIAC_INIT_ 2 WIRE (MAGCIO).....c.uuuiiiiiciiiee ettt eeiee e ettt e sttt s et e s e e e s e e e snnaeeesennneeas 101, 102
ZW_TRIAC_LIGHT _SET _LEVEL (MACIO)uuiiiiiiiiiee ittt ettt ettt a e et e e ennee s 103
ZW_TRIAC _OFF (IMCI0) ... tteiie ittt ettt e ettt e ettt e e ettt e e ettt e e e eaa e e e e e aaa e e e e ansseeeesnssaeeesnneeeessseeesannreeeas 103
ZW_TX_COUNTER (IMACIO) ..uetiieittiiieiitiiee e e ettt e e ettt e e sttt e e sttt e e sssseeeeaessaeeesansseeesansseeeessseeeesssaeeansnneeens 191
AT N 1Y/ o T T X1 o) =TSR 84
ZW_TYPE_LIBRARY (IMACIO)ciitttiieiitieeeeietieeeeeetteeeeessteeeessntaeeassatseeasssseeasaassseeesassaseesanseseessnseseesnseseesanns 84
ZW_UART_CLEAR _RX (MAGCT0)uetteiiiiiieeiieiee e eiteee e seiteee e s sttt eeessntteeassnseeeaesnsseeeesnsseeesansseeesansseeasaseeens 138
ZW_UART_CLEAR _TX (IMBGCT0)uttieeiiiiieeeetetee e ettt e e sttt e e sttt e e e snteeeassnsaeeaasnsseeaesnnsseeesnnseeesannneeasanseeens 137
ZW_UART_DISABLE (MAGCT0).....citteiieiiiiiteeeiiee ettt ettt st e e s sttt e e e st e e e snnseeeesnnaeeesnnsneeanneeeens 137
ZW_UART_ENABLE (MAGCTO)....ceiiuttiieiiiiiee ettt sttt st e e sttt e e e annee e e e anseeeeennneeeens 137
F A A S 7N B L I I (Y =T) SRR 133
ZW_UART_READ_RX (MACIO) ... ttiieiiitiiie ettt ettt e e ettt e e e ettt e e e et e e e e st e e e ssseeessssaeaesnneeaesssaeeesaseeeens 139
ZW_UART_REC _BYTE (MAGCI0O)......ceiiiitiiieiitiiee e ettt eetee ettt e et e e et a e st e e e snne e e e s nanseeesensseeasanneeean 134
ZW_UART_REC_STATUS (IMACI0)uteiieiitieee e ittt e e ettt e e ettt e e e sttt e e e st e e e sase e e e sasaeaeseasaeeesansseeessnseeean 134
ZW_UART_SEND_BYTE (MAGCI0) ...eeeiiutiiieiiiiiieeeeiiee e e ettt e e sttt eaesttee e e sssaeeessssaeeessnsseeessnsseeeesssanessnnseeesn 135
Zensys A/S Index Page 279 of 280

CONFIDENTIAL

INS10247-11 Z-Wave ZW0102/ZW0201/ZW0301 Appl. Prg. Guide v5.00 (Beta1) 2007-03-20

ZW_UART_SEND_NL (MAGCI0O) ...ceutteiieiiitiiieeiieit e e ettt e sttt e e e sttt e e sttt e e e sssaeaesnssaeeesansseeessnsseeesansseeesanseeeess 136
ZW_UART_SEND_NUM (IMACIO)....eetiiitiieeeiitiiieeeeieeeeeetteeesateeeasssseeessssaeeesassseeesasssseessnsseeessnssssessnsseeess 136
ZW_UART_SEND_STATUS (IMBCI0).....uetttiiiueiiieeeiieeeeeiteeeesiteeaestteeaesseeeeesansseeesansseeasssseeeessseeeesnnseeesn 135
ZW_UART_SEND_STRING (MaGCTO)eeiiiiiiiiieeiiiiieeeeiiieeeeteeeeesiteeaesiteeeesnseeaesnnsaeeessnseeeesnnsseeesannseeens 136
ZW_UART_WRITE_TX (IMBCIO).....ttttteiueieeeieiteeeeeeitteeeesitteeeaateeeaestaeeaesaaeeeesnsseeesansseeesansseeesansseeeesnseeeens 138
AT V=T =1 o o P PPPRR 85
AT Y =1 2 ST 1@\ I (1 = Tod (o) R PPPPPRN 85
Z\W_VERSION_BETA (IMBCI0) .. itttiteiitteee ettt ettt e e sttt e e e sttt e e e et eee e sttt e e e ambeeeeeanseeeesaseeeeeaanseeaesaseeeeeanes 86
ZW _VERSION_MAUJOR (IMACI0)c it ieiiieeeeeeeee ettt eta e e e e e sttaeeeeaeaesssnntsteeeeaaeasaannssseneaaaessaaanssseeeeeaesannsnes 86
ZW_VERSION_MAJOR /ZW_VERSION_MINOR /ZW_VERSION BETA......cccoeiieeeeeee e 86
ZW_VERSION_MINOR (MACIO)vtiiiiiiiiee e iitiiee sttt e e ettt e e e sateee e e sateeaessstaeeesssaeeessnsseeeesasseeeesassaeaesanseeesanns 86
ZW_WATCHDOG_DISABLE (MACIO)eeeieieiiiiieiie ittt e e e e e e e e e e e e e e e e e nnreeeeeeeaeeaannes 88
ZW_WATCHDOG_ENABLE (IMBCI0)ttiiiiiitiieeeeeiiieeeesieee e e steeeasstteeesssteeassnsseeaessssaeessassaeeesssaseessnsseeesnes 88
ZW_WATCHDOG_KICK (IMBCIO) ... eeeeiiutiieeiitiieeeatieeeeaeteeeeeastteeaesasteeeesasseeaessnsaeeesasseeeeansseeessnssneaesassenesanes 89
ZW_WatChdogDiSabIee et e e e e et e e e e e e e e ereeee e e e e e e aannes 88
ZW_WatChAOGENGDIE....... ... et e et e e e e e e e e e e e e e e e e e aareeeeaaeeeeaannes 88
b AT 4 =1 (o1 T o | (4 od G PP PPPRRN 89
y AT A= =T 4 € 1= | RO UPPRR 202
YA A= 1T N 11 1= 10 o SO RPPRR 200
ZW_ZensorSendDataFI00dc.oouuiiiiie e neee s 201
ZW_ZenSOrSetDEfaUIL ...t s 202
ZWO102 Controller/SIave UNit.............eeiiiiieiie et e e e e e st e e e e e e s s e ae e e e e e e s e saneneraeeeeaannnnes 253
ZW0102 Development Controller UNit......... ... et e e e e e e e e e e e e e nenes 253
ZWO0201 Controller/SIave UNit............ ..ot e et e e e e e e e e e e e e e e e e e e neneeeeeeeaaannns 254
ZW0201 Development Controller UNit......... ..o e e e e e e e e e e e e e nnnes 254
ZWO301 CoNtroller/SIave UNit..........oii ittt e st e st e e s snse e e e snaeeeesneeeesanneeeens 254
ZW0301 Development Controller UNit.............oooiiiiiiiiie et e e e e e e e e e aanes 254
W T e A L o oo =T 0] o 1= SRR 22,252
bYA= 10 TS 0011 O o T L o | SRR 191
Zensys A/S Index Page 280 of 280

CONFIDENTIAL

